| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
|- ( B =/= (/) <-> E. x x e. B ) |
| 2 |
|
xpsneng |
|- ( ( A e. V /\ x e. B ) -> ( A X. { x } ) ~~ A ) |
| 3 |
2
|
3adant2 |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. { x } ) ~~ A ) |
| 4 |
3
|
ensymd |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> A ~~ ( A X. { x } ) ) |
| 5 |
|
xpexg |
|- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |
| 6 |
5
|
3adant3 |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. B ) e. _V ) |
| 7 |
|
simp3 |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> x e. B ) |
| 8 |
7
|
snssd |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> { x } C_ B ) |
| 9 |
|
xpss2 |
|- ( { x } C_ B -> ( A X. { x } ) C_ ( A X. B ) ) |
| 10 |
8 9
|
syl |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. { x } ) C_ ( A X. B ) ) |
| 11 |
|
ssdomg |
|- ( ( A X. B ) e. _V -> ( ( A X. { x } ) C_ ( A X. B ) -> ( A X. { x } ) ~<_ ( A X. B ) ) ) |
| 12 |
6 10 11
|
sylc |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> ( A X. { x } ) ~<_ ( A X. B ) ) |
| 13 |
|
endomtr |
|- ( ( A ~~ ( A X. { x } ) /\ ( A X. { x } ) ~<_ ( A X. B ) ) -> A ~<_ ( A X. B ) ) |
| 14 |
4 12 13
|
syl2anc |
|- ( ( A e. V /\ B e. W /\ x e. B ) -> A ~<_ ( A X. B ) ) |
| 15 |
14
|
3expia |
|- ( ( A e. V /\ B e. W ) -> ( x e. B -> A ~<_ ( A X. B ) ) ) |
| 16 |
15
|
exlimdv |
|- ( ( A e. V /\ B e. W ) -> ( E. x x e. B -> A ~<_ ( A X. B ) ) ) |
| 17 |
1 16
|
biimtrid |
|- ( ( A e. V /\ B e. W ) -> ( B =/= (/) -> A ~<_ ( A X. B ) ) ) |
| 18 |
17
|
3impia |
|- ( ( A e. V /\ B e. W /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) |