| Step |
Hyp |
Ref |
Expression |
| 1 |
|
relen |
|- Rel ~~ |
| 2 |
1
|
brrelex1i |
|- ( C ~~ D -> C e. _V ) |
| 3 |
|
endom |
|- ( A ~~ B -> A ~<_ B ) |
| 4 |
|
xpdom1g |
|- ( ( C e. _V /\ A ~<_ B ) -> ( A X. C ) ~<_ ( B X. C ) ) |
| 5 |
2 3 4
|
syl2anr |
|- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~<_ ( B X. C ) ) |
| 6 |
1
|
brrelex2i |
|- ( A ~~ B -> B e. _V ) |
| 7 |
|
endom |
|- ( C ~~ D -> C ~<_ D ) |
| 8 |
|
xpdom2g |
|- ( ( B e. _V /\ C ~<_ D ) -> ( B X. C ) ~<_ ( B X. D ) ) |
| 9 |
6 7 8
|
syl2an |
|- ( ( A ~~ B /\ C ~~ D ) -> ( B X. C ) ~<_ ( B X. D ) ) |
| 10 |
|
domtr |
|- ( ( ( A X. C ) ~<_ ( B X. C ) /\ ( B X. C ) ~<_ ( B X. D ) ) -> ( A X. C ) ~<_ ( B X. D ) ) |
| 11 |
5 9 10
|
syl2anc |
|- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~<_ ( B X. D ) ) |
| 12 |
1
|
brrelex2i |
|- ( C ~~ D -> D e. _V ) |
| 13 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
| 14 |
|
endom |
|- ( B ~~ A -> B ~<_ A ) |
| 15 |
13 14
|
syl |
|- ( A ~~ B -> B ~<_ A ) |
| 16 |
|
xpdom1g |
|- ( ( D e. _V /\ B ~<_ A ) -> ( B X. D ) ~<_ ( A X. D ) ) |
| 17 |
12 15 16
|
syl2anr |
|- ( ( A ~~ B /\ C ~~ D ) -> ( B X. D ) ~<_ ( A X. D ) ) |
| 18 |
1
|
brrelex1i |
|- ( A ~~ B -> A e. _V ) |
| 19 |
|
ensym |
|- ( C ~~ D -> D ~~ C ) |
| 20 |
|
endom |
|- ( D ~~ C -> D ~<_ C ) |
| 21 |
19 20
|
syl |
|- ( C ~~ D -> D ~<_ C ) |
| 22 |
|
xpdom2g |
|- ( ( A e. _V /\ D ~<_ C ) -> ( A X. D ) ~<_ ( A X. C ) ) |
| 23 |
18 21 22
|
syl2an |
|- ( ( A ~~ B /\ C ~~ D ) -> ( A X. D ) ~<_ ( A X. C ) ) |
| 24 |
|
domtr |
|- ( ( ( B X. D ) ~<_ ( A X. D ) /\ ( A X. D ) ~<_ ( A X. C ) ) -> ( B X. D ) ~<_ ( A X. C ) ) |
| 25 |
17 23 24
|
syl2anc |
|- ( ( A ~~ B /\ C ~~ D ) -> ( B X. D ) ~<_ ( A X. C ) ) |
| 26 |
|
sbth |
|- ( ( ( A X. C ) ~<_ ( B X. D ) /\ ( B X. D ) ~<_ ( A X. C ) ) -> ( A X. C ) ~~ ( B X. D ) ) |
| 27 |
11 25 26
|
syl2anc |
|- ( ( A ~~ B /\ C ~~ D ) -> ( A X. C ) ~~ ( B X. D ) ) |