Description: At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xpeq0 | |- ( ( A X. B ) = (/) <-> ( A = (/) \/ B = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz | |- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
|
2 | 1 | necon2bbii | |- ( ( A X. B ) = (/) <-> -. ( A =/= (/) /\ B =/= (/) ) ) |
3 | ianor | |- ( -. ( A =/= (/) /\ B =/= (/) ) <-> ( -. A =/= (/) \/ -. B =/= (/) ) ) |
|
4 | nne | |- ( -. A =/= (/) <-> A = (/) ) |
|
5 | nne | |- ( -. B =/= (/) <-> B = (/) ) |
|
6 | 4 5 | orbi12i | |- ( ( -. A =/= (/) \/ -. B =/= (/) ) <-> ( A = (/) \/ B = (/) ) ) |
7 | 2 3 6 | 3bitri | |- ( ( A X. B ) = (/) <-> ( A = (/) \/ B = (/) ) ) |