Description: Equality theorem for Cartesian product. (Contributed by NM, 5-Jul-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpeq2 | |- ( A = B -> ( C X. A ) = ( C X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | |- ( A = B -> ( y e. A <-> y e. B ) ) |
|
| 2 | 1 | anbi2d | |- ( A = B -> ( ( x e. C /\ y e. A ) <-> ( x e. C /\ y e. B ) ) ) |
| 3 | 2 | opabbidv | |- ( A = B -> { <. x , y >. | ( x e. C /\ y e. A ) } = { <. x , y >. | ( x e. C /\ y e. B ) } ) |
| 4 | df-xp | |- ( C X. A ) = { <. x , y >. | ( x e. C /\ y e. A ) } |
|
| 5 | df-xp | |- ( C X. B ) = { <. x , y >. | ( x e. C /\ y e. B ) } |
|
| 6 | 3 4 5 | 3eqtr4g | |- ( A = B -> ( C X. A ) = ( C X. B ) ) |