Metamath Proof Explorer


Theorem xpexg

Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. See also xpexgALT . (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion xpexg
|- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V )

Proof

Step Hyp Ref Expression
1 xpsspw
 |-  ( A X. B ) C_ ~P ~P ( A u. B )
2 unexg
 |-  ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V )
3 pwexg
 |-  ( ( A u. B ) e. _V -> ~P ( A u. B ) e. _V )
4 pwexg
 |-  ( ~P ( A u. B ) e. _V -> ~P ~P ( A u. B ) e. _V )
5 2 3 4 3syl
 |-  ( ( A e. V /\ B e. W ) -> ~P ~P ( A u. B ) e. _V )
6 ssexg
 |-  ( ( ( A X. B ) C_ ~P ~P ( A u. B ) /\ ~P ~P ( A u. B ) e. _V ) -> ( A X. B ) e. _V )
7 1 5 6 sylancr
 |-  ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V )