Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. See also xpexgALT . (Contributed by NM, 14-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexg | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpsspw | |- ( A X. B ) C_ ~P ~P ( A u. B ) |
|
| 2 | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
|
| 3 | pwexg | |- ( ( A u. B ) e. _V -> ~P ( A u. B ) e. _V ) |
|
| 4 | pwexg | |- ( ~P ( A u. B ) e. _V -> ~P ~P ( A u. B ) e. _V ) |
|
| 5 | 2 3 4 | 3syl | |- ( ( A e. V /\ B e. W ) -> ~P ~P ( A u. B ) e. _V ) |
| 6 | ssexg | |- ( ( ( A X. B ) C_ ~P ~P ( A u. B ) /\ ~P ~P ( A u. B ) e. _V ) -> ( A X. B ) e. _V ) |
|
| 7 | 1 5 6 | sylancr | |- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V ) |