| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | eleq1 |  |-  ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) | 
						
							| 3 | 1 2 | mpbiri |  |-  ( A = (/) -> A e. _V ) | 
						
							| 4 | 3 | pm2.24d |  |-  ( A = (/) -> ( -. A e. _V -> B e. _V ) ) | 
						
							| 5 | 4 | a1d |  |-  ( A = (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) | 
						
							| 6 |  | rnexg |  |-  ( ( A X. B ) e. C -> ran ( A X. B ) e. _V ) | 
						
							| 7 |  | rnxp |  |-  ( A =/= (/) -> ran ( A X. B ) = B ) | 
						
							| 8 | 7 | eleq1d |  |-  ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) | 
						
							| 9 | 6 8 | imbitrid |  |-  ( A =/= (/) -> ( ( A X. B ) e. C -> B e. _V ) ) | 
						
							| 10 | 9 | a1dd |  |-  ( A =/= (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) | 
						
							| 11 | 5 10 | pm2.61ine |  |-  ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) | 
						
							| 12 | 11 | orrd |  |-  ( ( A X. B ) e. C -> ( A e. _V \/ B e. _V ) ) |