Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
eleq1 |
|- ( A = (/) -> ( A e. _V <-> (/) e. _V ) ) |
3 |
1 2
|
mpbiri |
|- ( A = (/) -> A e. _V ) |
4 |
3
|
pm2.24d |
|- ( A = (/) -> ( -. A e. _V -> B e. _V ) ) |
5 |
4
|
a1d |
|- ( A = (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) |
6 |
|
rnexg |
|- ( ( A X. B ) e. C -> ran ( A X. B ) e. _V ) |
7 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
8 |
7
|
eleq1d |
|- ( A =/= (/) -> ( ran ( A X. B ) e. _V <-> B e. _V ) ) |
9 |
6 8
|
syl5ib |
|- ( A =/= (/) -> ( ( A X. B ) e. C -> B e. _V ) ) |
10 |
9
|
a1dd |
|- ( A =/= (/) -> ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) ) |
11 |
5 10
|
pm2.61ine |
|- ( ( A X. B ) e. C -> ( -. A e. _V -> B e. _V ) ) |
12 |
11
|
orrd |
|- ( ( A X. B ) e. C -> ( A e. _V \/ B e. _V ) ) |