Step |
Hyp |
Ref |
Expression |
1 |
|
xpnz |
|- ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |
2 |
|
dmxp |
|- ( B =/= (/) -> dom ( A X. B ) = A ) |
3 |
2
|
adantl |
|- ( ( ( A X. B ) e. C /\ B =/= (/) ) -> dom ( A X. B ) = A ) |
4 |
|
dmexg |
|- ( ( A X. B ) e. C -> dom ( A X. B ) e. _V ) |
5 |
4
|
adantr |
|- ( ( ( A X. B ) e. C /\ B =/= (/) ) -> dom ( A X. B ) e. _V ) |
6 |
3 5
|
eqeltrrd |
|- ( ( ( A X. B ) e. C /\ B =/= (/) ) -> A e. _V ) |
7 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. B ) = B ) |
8 |
7
|
adantl |
|- ( ( ( A X. B ) e. C /\ A =/= (/) ) -> ran ( A X. B ) = B ) |
9 |
|
rnexg |
|- ( ( A X. B ) e. C -> ran ( A X. B ) e. _V ) |
10 |
9
|
adantr |
|- ( ( ( A X. B ) e. C /\ A =/= (/) ) -> ran ( A X. B ) e. _V ) |
11 |
8 10
|
eqeltrrd |
|- ( ( ( A X. B ) e. C /\ A =/= (/) ) -> B e. _V ) |
12 |
6 11
|
anim12dan |
|- ( ( ( A X. B ) e. C /\ ( B =/= (/) /\ A =/= (/) ) ) -> ( A e. _V /\ B e. _V ) ) |
13 |
12
|
ancom2s |
|- ( ( ( A X. B ) e. C /\ ( A =/= (/) /\ B =/= (/) ) ) -> ( A e. _V /\ B e. _V ) ) |
14 |
1 13
|
sylan2br |
|- ( ( ( A X. B ) e. C /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) ) |