| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpf1o.1 |  |-  ( ph -> ( x e. A |-> X ) : A -1-1-onto-> B ) | 
						
							| 2 |  | xpf1o.2 |  |-  ( ph -> ( y e. C |-> Y ) : C -1-1-onto-> D ) | 
						
							| 3 |  | xp1st |  |-  ( u e. ( A X. C ) -> ( 1st ` u ) e. A ) | 
						
							| 4 | 3 | adantl |  |-  ( ( ph /\ u e. ( A X. C ) ) -> ( 1st ` u ) e. A ) | 
						
							| 5 |  | eqid |  |-  ( x e. A |-> X ) = ( x e. A |-> X ) | 
						
							| 6 | 5 | f1ompt |  |-  ( ( x e. A |-> X ) : A -1-1-onto-> B <-> ( A. x e. A X e. B /\ A. z e. B E! x e. A z = X ) ) | 
						
							| 7 | 1 6 | sylib |  |-  ( ph -> ( A. x e. A X e. B /\ A. z e. B E! x e. A z = X ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ph -> A. x e. A X e. B ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ph /\ u e. ( A X. C ) ) -> A. x e. A X e. B ) | 
						
							| 10 |  | nfcsb1v |  |-  F/_ x [_ ( 1st ` u ) / x ]_ X | 
						
							| 11 | 10 | nfel1 |  |-  F/ x [_ ( 1st ` u ) / x ]_ X e. B | 
						
							| 12 |  | csbeq1a |  |-  ( x = ( 1st ` u ) -> X = [_ ( 1st ` u ) / x ]_ X ) | 
						
							| 13 | 12 | eleq1d |  |-  ( x = ( 1st ` u ) -> ( X e. B <-> [_ ( 1st ` u ) / x ]_ X e. B ) ) | 
						
							| 14 | 11 13 | rspc |  |-  ( ( 1st ` u ) e. A -> ( A. x e. A X e. B -> [_ ( 1st ` u ) / x ]_ X e. B ) ) | 
						
							| 15 | 4 9 14 | sylc |  |-  ( ( ph /\ u e. ( A X. C ) ) -> [_ ( 1st ` u ) / x ]_ X e. B ) | 
						
							| 16 |  | xp2nd |  |-  ( u e. ( A X. C ) -> ( 2nd ` u ) e. C ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ u e. ( A X. C ) ) -> ( 2nd ` u ) e. C ) | 
						
							| 18 |  | eqid |  |-  ( y e. C |-> Y ) = ( y e. C |-> Y ) | 
						
							| 19 | 18 | f1ompt |  |-  ( ( y e. C |-> Y ) : C -1-1-onto-> D <-> ( A. y e. C Y e. D /\ A. w e. D E! y e. C w = Y ) ) | 
						
							| 20 | 2 19 | sylib |  |-  ( ph -> ( A. y e. C Y e. D /\ A. w e. D E! y e. C w = Y ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ph -> A. y e. C Y e. D ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ u e. ( A X. C ) ) -> A. y e. C Y e. D ) | 
						
							| 23 |  | nfcsb1v |  |-  F/_ y [_ ( 2nd ` u ) / y ]_ Y | 
						
							| 24 | 23 | nfel1 |  |-  F/ y [_ ( 2nd ` u ) / y ]_ Y e. D | 
						
							| 25 |  | csbeq1a |  |-  ( y = ( 2nd ` u ) -> Y = [_ ( 2nd ` u ) / y ]_ Y ) | 
						
							| 26 | 25 | eleq1d |  |-  ( y = ( 2nd ` u ) -> ( Y e. D <-> [_ ( 2nd ` u ) / y ]_ Y e. D ) ) | 
						
							| 27 | 24 26 | rspc |  |-  ( ( 2nd ` u ) e. C -> ( A. y e. C Y e. D -> [_ ( 2nd ` u ) / y ]_ Y e. D ) ) | 
						
							| 28 | 17 22 27 | sylc |  |-  ( ( ph /\ u e. ( A X. C ) ) -> [_ ( 2nd ` u ) / y ]_ Y e. D ) | 
						
							| 29 | 15 28 | opelxpd |  |-  ( ( ph /\ u e. ( A X. C ) ) -> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) ) | 
						
							| 30 | 29 | ralrimiva |  |-  ( ph -> A. u e. ( A X. C ) <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) ) | 
						
							| 31 | 7 | simprd |  |-  ( ph -> A. z e. B E! x e. A z = X ) | 
						
							| 32 | 31 | r19.21bi |  |-  ( ( ph /\ z e. B ) -> E! x e. A z = X ) | 
						
							| 33 |  | reu6 |  |-  ( E! x e. A z = X <-> E. s e. A A. x e. A ( z = X <-> x = s ) ) | 
						
							| 34 | 32 33 | sylib |  |-  ( ( ph /\ z e. B ) -> E. s e. A A. x e. A ( z = X <-> x = s ) ) | 
						
							| 35 | 20 | simprd |  |-  ( ph -> A. w e. D E! y e. C w = Y ) | 
						
							| 36 | 35 | r19.21bi |  |-  ( ( ph /\ w e. D ) -> E! y e. C w = Y ) | 
						
							| 37 |  | reu6 |  |-  ( E! y e. C w = Y <-> E. t e. C A. y e. C ( w = Y <-> y = t ) ) | 
						
							| 38 | 36 37 | sylib |  |-  ( ( ph /\ w e. D ) -> E. t e. C A. y e. C ( w = Y <-> y = t ) ) | 
						
							| 39 | 34 38 | anim12dan |  |-  ( ( ph /\ ( z e. B /\ w e. D ) ) -> ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) ) | 
						
							| 40 |  | reeanv |  |-  ( E. s e. A E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) <-> ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) ) | 
						
							| 41 |  | pm4.38 |  |-  ( ( ( z = X <-> x = s ) /\ ( w = Y <-> y = t ) ) -> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 42 | 41 | ex |  |-  ( ( z = X <-> x = s ) -> ( ( w = Y <-> y = t ) -> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 43 | 42 | ralimdv |  |-  ( ( z = X <-> x = s ) -> ( A. y e. C ( w = Y <-> y = t ) -> A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 44 | 43 | com12 |  |-  ( A. y e. C ( w = Y <-> y = t ) -> ( ( z = X <-> x = s ) -> A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 45 | 44 | ralimdv |  |-  ( A. y e. C ( w = Y <-> y = t ) -> ( A. x e. A ( z = X <-> x = s ) -> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 46 | 45 | impcom |  |-  ( ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 47 | 46 | reximi |  |-  ( E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 48 | 47 | reximi |  |-  ( E. s e. A E. t e. C ( A. x e. A ( z = X <-> x = s ) /\ A. y e. C ( w = Y <-> y = t ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 49 | 40 48 | sylbir |  |-  ( ( E. s e. A A. x e. A ( z = X <-> x = s ) /\ E. t e. C A. y e. C ( w = Y <-> y = t ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 50 | 39 49 | syl |  |-  ( ( ph /\ ( z e. B /\ w e. D ) ) -> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 51 |  | vex |  |-  s e. _V | 
						
							| 52 |  | vex |  |-  t e. _V | 
						
							| 53 | 51 52 | op1std |  |-  ( u = <. s , t >. -> ( 1st ` u ) = s ) | 
						
							| 54 | 53 | csbeq1d |  |-  ( u = <. s , t >. -> [_ ( 1st ` u ) / x ]_ X = [_ s / x ]_ X ) | 
						
							| 55 | 54 | eqeq2d |  |-  ( u = <. s , t >. -> ( z = [_ ( 1st ` u ) / x ]_ X <-> z = [_ s / x ]_ X ) ) | 
						
							| 56 | 51 52 | op2ndd |  |-  ( u = <. s , t >. -> ( 2nd ` u ) = t ) | 
						
							| 57 | 56 | csbeq1d |  |-  ( u = <. s , t >. -> [_ ( 2nd ` u ) / y ]_ Y = [_ t / y ]_ Y ) | 
						
							| 58 | 57 | eqeq2d |  |-  ( u = <. s , t >. -> ( w = [_ ( 2nd ` u ) / y ]_ Y <-> w = [_ t / y ]_ Y ) ) | 
						
							| 59 | 55 58 | anbi12d |  |-  ( u = <. s , t >. -> ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) ) ) | 
						
							| 60 |  | eqeq1 |  |-  ( u = <. s , t >. -> ( u = v <-> <. s , t >. = v ) ) | 
						
							| 61 | 59 60 | bibi12d |  |-  ( u = <. s , t >. -> ( ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) | 
						
							| 62 | 61 | ralxp |  |-  ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. s e. A A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) | 
						
							| 63 |  | nfv |  |-  F/ s A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) | 
						
							| 64 |  | nfcv |  |-  F/_ x C | 
						
							| 65 |  | nfcsb1v |  |-  F/_ x [_ s / x ]_ X | 
						
							| 66 | 65 | nfeq2 |  |-  F/ x z = [_ s / x ]_ X | 
						
							| 67 |  | nfv |  |-  F/ x w = [_ t / y ]_ Y | 
						
							| 68 | 66 67 | nfan |  |-  F/ x ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) | 
						
							| 69 |  | nfv |  |-  F/ x <. s , t >. = v | 
						
							| 70 | 68 69 | nfbi |  |-  F/ x ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) | 
						
							| 71 | 64 70 | nfralw |  |-  F/ x A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) | 
						
							| 72 |  | nfv |  |-  F/ t ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) | 
						
							| 73 |  | nfv |  |-  F/ y z = X | 
						
							| 74 |  | nfcsb1v |  |-  F/_ y [_ t / y ]_ Y | 
						
							| 75 | 74 | nfeq2 |  |-  F/ y w = [_ t / y ]_ Y | 
						
							| 76 | 73 75 | nfan |  |-  F/ y ( z = X /\ w = [_ t / y ]_ Y ) | 
						
							| 77 |  | nfv |  |-  F/ y <. x , t >. = v | 
						
							| 78 | 76 77 | nfbi |  |-  F/ y ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) | 
						
							| 79 |  | csbeq1a |  |-  ( y = t -> Y = [_ t / y ]_ Y ) | 
						
							| 80 | 79 | eqeq2d |  |-  ( y = t -> ( w = Y <-> w = [_ t / y ]_ Y ) ) | 
						
							| 81 | 80 | anbi2d |  |-  ( y = t -> ( ( z = X /\ w = Y ) <-> ( z = X /\ w = [_ t / y ]_ Y ) ) ) | 
						
							| 82 |  | opeq2 |  |-  ( y = t -> <. x , y >. = <. x , t >. ) | 
						
							| 83 | 82 | eqeq1d |  |-  ( y = t -> ( <. x , y >. = v <-> <. x , t >. = v ) ) | 
						
							| 84 | 81 83 | bibi12d |  |-  ( y = t -> ( ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) ) ) | 
						
							| 85 | 72 78 84 | cbvralw |  |-  ( A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. t e. C ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) ) | 
						
							| 86 |  | csbeq1a |  |-  ( x = s -> X = [_ s / x ]_ X ) | 
						
							| 87 | 86 | eqeq2d |  |-  ( x = s -> ( z = X <-> z = [_ s / x ]_ X ) ) | 
						
							| 88 | 87 | anbi1d |  |-  ( x = s -> ( ( z = X /\ w = [_ t / y ]_ Y ) <-> ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) ) ) | 
						
							| 89 |  | opeq1 |  |-  ( x = s -> <. x , t >. = <. s , t >. ) | 
						
							| 90 | 89 | eqeq1d |  |-  ( x = s -> ( <. x , t >. = v <-> <. s , t >. = v ) ) | 
						
							| 91 | 88 90 | bibi12d |  |-  ( x = s -> ( ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) <-> ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) | 
						
							| 92 | 91 | ralbidv |  |-  ( x = s -> ( A. t e. C ( ( z = X /\ w = [_ t / y ]_ Y ) <-> <. x , t >. = v ) <-> A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) | 
						
							| 93 | 85 92 | bitrid |  |-  ( x = s -> ( A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) ) | 
						
							| 94 | 63 71 93 | cbvralw |  |-  ( A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. s e. A A. t e. C ( ( z = [_ s / x ]_ X /\ w = [_ t / y ]_ Y ) <-> <. s , t >. = v ) ) | 
						
							| 95 | 62 94 | bitr4i |  |-  ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) ) | 
						
							| 96 |  | eqeq2 |  |-  ( v = <. s , t >. -> ( <. x , y >. = v <-> <. x , y >. = <. s , t >. ) ) | 
						
							| 97 |  | vex |  |-  x e. _V | 
						
							| 98 |  | vex |  |-  y e. _V | 
						
							| 99 | 97 98 | opth |  |-  ( <. x , y >. = <. s , t >. <-> ( x = s /\ y = t ) ) | 
						
							| 100 | 96 99 | bitrdi |  |-  ( v = <. s , t >. -> ( <. x , y >. = v <-> ( x = s /\ y = t ) ) ) | 
						
							| 101 | 100 | bibi2d |  |-  ( v = <. s , t >. -> ( ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 102 | 101 | 2ralbidv |  |-  ( v = <. s , t >. -> ( A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> <. x , y >. = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 103 | 95 102 | bitrid |  |-  ( v = <. s , t >. -> ( A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) ) | 
						
							| 104 | 103 | rexxp |  |-  ( E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) <-> E. s e. A E. t e. C A. x e. A A. y e. C ( ( z = X /\ w = Y ) <-> ( x = s /\ y = t ) ) ) | 
						
							| 105 | 50 104 | sylibr |  |-  ( ( ph /\ ( z e. B /\ w e. D ) ) -> E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) ) | 
						
							| 106 |  | reu6 |  |-  ( E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> E. v e. ( A X. C ) A. u e. ( A X. C ) ( ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) <-> u = v ) ) | 
						
							| 107 | 105 106 | sylibr |  |-  ( ( ph /\ ( z e. B /\ w e. D ) ) -> E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) | 
						
							| 108 | 107 | ralrimivva |  |-  ( ph -> A. z e. B A. w e. D E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) | 
						
							| 109 |  | eqeq1 |  |-  ( v = <. z , w >. -> ( v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> <. z , w >. = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) ) | 
						
							| 110 |  | vex |  |-  z e. _V | 
						
							| 111 |  | vex |  |-  w e. _V | 
						
							| 112 | 110 111 | opth |  |-  ( <. z , w >. = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) | 
						
							| 113 | 109 112 | bitrdi |  |-  ( v = <. z , w >. -> ( v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) ) | 
						
							| 114 | 113 | reubidv |  |-  ( v = <. z , w >. -> ( E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) ) | 
						
							| 115 | 114 | ralxp |  |-  ( A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. <-> A. z e. B A. w e. D E! u e. ( A X. C ) ( z = [_ ( 1st ` u ) / x ]_ X /\ w = [_ ( 2nd ` u ) / y ]_ Y ) ) | 
						
							| 116 | 108 115 | sylibr |  |-  ( ph -> A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) | 
						
							| 117 |  | nfcv |  |-  F/_ z <. X , Y >. | 
						
							| 118 |  | nfcv |  |-  F/_ w <. X , Y >. | 
						
							| 119 |  | nfcsb1v |  |-  F/_ x [_ z / x ]_ X | 
						
							| 120 |  | nfcv |  |-  F/_ x [_ w / y ]_ Y | 
						
							| 121 | 119 120 | nfop |  |-  F/_ x <. [_ z / x ]_ X , [_ w / y ]_ Y >. | 
						
							| 122 |  | nfcv |  |-  F/_ y [_ z / x ]_ X | 
						
							| 123 |  | nfcsb1v |  |-  F/_ y [_ w / y ]_ Y | 
						
							| 124 | 122 123 | nfop |  |-  F/_ y <. [_ z / x ]_ X , [_ w / y ]_ Y >. | 
						
							| 125 |  | csbeq1a |  |-  ( x = z -> X = [_ z / x ]_ X ) | 
						
							| 126 |  | csbeq1a |  |-  ( y = w -> Y = [_ w / y ]_ Y ) | 
						
							| 127 |  | opeq12 |  |-  ( ( X = [_ z / x ]_ X /\ Y = [_ w / y ]_ Y ) -> <. X , Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) | 
						
							| 128 | 125 126 127 | syl2an |  |-  ( ( x = z /\ y = w ) -> <. X , Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) | 
						
							| 129 | 117 118 121 124 128 | cbvmpo |  |-  ( x e. A , y e. C |-> <. X , Y >. ) = ( z e. A , w e. C |-> <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) | 
						
							| 130 | 110 111 | op1std |  |-  ( u = <. z , w >. -> ( 1st ` u ) = z ) | 
						
							| 131 | 130 | csbeq1d |  |-  ( u = <. z , w >. -> [_ ( 1st ` u ) / x ]_ X = [_ z / x ]_ X ) | 
						
							| 132 | 110 111 | op2ndd |  |-  ( u = <. z , w >. -> ( 2nd ` u ) = w ) | 
						
							| 133 | 132 | csbeq1d |  |-  ( u = <. z , w >. -> [_ ( 2nd ` u ) / y ]_ Y = [_ w / y ]_ Y ) | 
						
							| 134 | 131 133 | opeq12d |  |-  ( u = <. z , w >. -> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. = <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) | 
						
							| 135 | 134 | mpompt |  |-  ( u e. ( A X. C ) |-> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) = ( z e. A , w e. C |-> <. [_ z / x ]_ X , [_ w / y ]_ Y >. ) | 
						
							| 136 | 129 135 | eqtr4i |  |-  ( x e. A , y e. C |-> <. X , Y >. ) = ( u e. ( A X. C ) |-> <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) | 
						
							| 137 | 136 | f1ompt |  |-  ( ( x e. A , y e. C |-> <. X , Y >. ) : ( A X. C ) -1-1-onto-> ( B X. D ) <-> ( A. u e. ( A X. C ) <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. e. ( B X. D ) /\ A. v e. ( B X. D ) E! u e. ( A X. C ) v = <. [_ ( 1st ` u ) / x ]_ X , [_ ( 2nd ` u ) / y ]_ Y >. ) ) | 
						
							| 138 | 30 116 137 | sylanbrc |  |-  ( ph -> ( x e. A , y e. C |-> <. X , Y >. ) : ( A X. C ) -1-1-onto-> ( B X. D ) ) |