Metamath Proof Explorer


Theorem xpfir

Description: The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009) (Proof shortened by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion xpfir
|- ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) )

Proof

Step Hyp Ref Expression
1 xpexr2
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) )
2 1 simpld
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. _V )
3 1 simprd
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. _V )
4 simpr
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A X. B ) =/= (/) )
5 xpnz
 |-  ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) )
6 4 5 sylibr
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A =/= (/) /\ B =/= (/) ) )
7 6 simprd
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B =/= (/) )
8 xpdom3
 |-  ( ( A e. _V /\ B e. _V /\ B =/= (/) ) -> A ~<_ ( A X. B ) )
9 2 3 7 8 syl3anc
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A ~<_ ( A X. B ) )
10 domfi
 |-  ( ( ( A X. B ) e. Fin /\ A ~<_ ( A X. B ) ) -> A e. Fin )
11 9 10 syldan
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. Fin )
12 6 simpld
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A =/= (/) )
13 xpdom3
 |-  ( ( B e. _V /\ A e. _V /\ A =/= (/) ) -> B ~<_ ( B X. A ) )
14 3 2 12 13 syl3anc
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( B X. A ) )
15 xpcomeng
 |-  ( ( B e. _V /\ A e. _V ) -> ( B X. A ) ~~ ( A X. B ) )
16 3 2 15 syl2anc
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( B X. A ) ~~ ( A X. B ) )
17 domentr
 |-  ( ( B ~<_ ( B X. A ) /\ ( B X. A ) ~~ ( A X. B ) ) -> B ~<_ ( A X. B ) )
18 14 16 17 syl2anc
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( A X. B ) )
19 domfi
 |-  ( ( ( A X. B ) e. Fin /\ B ~<_ ( A X. B ) ) -> B e. Fin )
20 18 19 syldan
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. Fin )
21 11 20 jca
 |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) )