| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpexr2 |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. _V /\ B e. _V ) ) | 
						
							| 2 | 1 | simpld |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. _V ) | 
						
							| 3 | 1 | simprd |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. _V ) | 
						
							| 4 |  | simpr |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A X. B ) =/= (/) ) | 
						
							| 5 |  | xpnz |  |-  ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) | 
						
							| 6 | 4 5 | sylibr |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A =/= (/) /\ B =/= (/) ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B =/= (/) ) | 
						
							| 8 |  | xpdom3 |  |-  ( ( A e. _V /\ B e. _V /\ B =/= (/) ) -> A ~<_ ( A X. B ) ) | 
						
							| 9 | 2 3 7 8 | syl3anc |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A ~<_ ( A X. B ) ) | 
						
							| 10 |  | domfi |  |-  ( ( ( A X. B ) e. Fin /\ A ~<_ ( A X. B ) ) -> A e. Fin ) | 
						
							| 11 | 9 10 | syldan |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A e. Fin ) | 
						
							| 12 | 6 | simpld |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> A =/= (/) ) | 
						
							| 13 |  | xpdom3 |  |-  ( ( B e. _V /\ A e. _V /\ A =/= (/) ) -> B ~<_ ( B X. A ) ) | 
						
							| 14 | 3 2 12 13 | syl3anc |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( B X. A ) ) | 
						
							| 15 |  | xpcomeng |  |-  ( ( B e. _V /\ A e. _V ) -> ( B X. A ) ~~ ( A X. B ) ) | 
						
							| 16 | 3 2 15 | syl2anc |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( B X. A ) ~~ ( A X. B ) ) | 
						
							| 17 |  | domentr |  |-  ( ( B ~<_ ( B X. A ) /\ ( B X. A ) ~~ ( A X. B ) ) -> B ~<_ ( A X. B ) ) | 
						
							| 18 | 14 16 17 | syl2anc |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B ~<_ ( A X. B ) ) | 
						
							| 19 |  | domfi |  |-  ( ( ( A X. B ) e. Fin /\ B ~<_ ( A X. B ) ) -> B e. Fin ) | 
						
							| 20 | 18 19 | syldan |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> B e. Fin ) | 
						
							| 21 | 11 20 | jca |  |-  ( ( ( A X. B ) e. Fin /\ ( A X. B ) =/= (/) ) -> ( A e. Fin /\ B e. Fin ) ) |