Step |
Hyp |
Ref |
Expression |
1 |
|
relxp |
|- Rel ( A X. A ) |
2 |
|
dmxpid |
|- dom ( A X. A ) = A |
3 |
|
cnvxp |
|- `' ( A X. A ) = ( A X. A ) |
4 |
|
xpidtr |
|- ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) |
5 |
|
uneq1 |
|- ( `' ( A X. A ) = ( A X. A ) -> ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) ) |
6 |
|
unss2 |
|- ( ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) ) |
7 |
|
unidm |
|- ( ( A X. A ) u. ( A X. A ) ) = ( A X. A ) |
8 |
|
eqtr |
|- ( ( ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) /\ ( ( A X. A ) u. ( A X. A ) ) = ( A X. A ) ) -> ( `' ( A X. A ) u. ( A X. A ) ) = ( A X. A ) ) |
9 |
|
sseq2 |
|- ( ( `' ( A X. A ) u. ( A X. A ) ) = ( A X. A ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) <-> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
10 |
9
|
biimpd |
|- ( ( `' ( A X. A ) u. ( A X. A ) ) = ( A X. A ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
11 |
8 10
|
syl |
|- ( ( ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) /\ ( ( A X. A ) u. ( A X. A ) ) = ( A X. A ) ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
12 |
7 11
|
mpan2 |
|- ( ( `' ( A X. A ) u. ( A X. A ) ) = ( ( A X. A ) u. ( A X. A ) ) -> ( ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( `' ( A X. A ) u. ( A X. A ) ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
13 |
5 6 12
|
syl2im |
|- ( `' ( A X. A ) = ( A X. A ) -> ( ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) -> ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
14 |
3 4 13
|
mp2 |
|- ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) |
15 |
|
df-er |
|- ( ( A X. A ) Er A <-> ( Rel ( A X. A ) /\ dom ( A X. A ) = A /\ ( `' ( A X. A ) u. ( ( A X. A ) o. ( A X. A ) ) ) C_ ( A X. A ) ) ) |
16 |
1 2 14 15
|
mpbir3an |
|- ( A X. A ) Er A |