| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exmid |  |-  ( ( A i^i C ) = (/) \/ -. ( A i^i C ) = (/) ) | 
						
							| 2 |  | df-ima |  |-  ( ( A X. B ) " C ) = ran ( ( A X. B ) |` C ) | 
						
							| 3 |  | df-res |  |-  ( ( A X. B ) |` C ) = ( ( A X. B ) i^i ( C X. _V ) ) | 
						
							| 4 | 3 | rneqi |  |-  ran ( ( A X. B ) |` C ) = ran ( ( A X. B ) i^i ( C X. _V ) ) | 
						
							| 5 | 2 4 | eqtri |  |-  ( ( A X. B ) " C ) = ran ( ( A X. B ) i^i ( C X. _V ) ) | 
						
							| 6 |  | inxp |  |-  ( ( A X. B ) i^i ( C X. _V ) ) = ( ( A i^i C ) X. ( B i^i _V ) ) | 
						
							| 7 | 6 | rneqi |  |-  ran ( ( A X. B ) i^i ( C X. _V ) ) = ran ( ( A i^i C ) X. ( B i^i _V ) ) | 
						
							| 8 |  | inv1 |  |-  ( B i^i _V ) = B | 
						
							| 9 | 8 | xpeq2i |  |-  ( ( A i^i C ) X. ( B i^i _V ) ) = ( ( A i^i C ) X. B ) | 
						
							| 10 | 9 | rneqi |  |-  ran ( ( A i^i C ) X. ( B i^i _V ) ) = ran ( ( A i^i C ) X. B ) | 
						
							| 11 | 5 7 10 | 3eqtri |  |-  ( ( A X. B ) " C ) = ran ( ( A i^i C ) X. B ) | 
						
							| 12 |  | xpeq1 |  |-  ( ( A i^i C ) = (/) -> ( ( A i^i C ) X. B ) = ( (/) X. B ) ) | 
						
							| 13 |  | 0xp |  |-  ( (/) X. B ) = (/) | 
						
							| 14 | 12 13 | eqtrdi |  |-  ( ( A i^i C ) = (/) -> ( ( A i^i C ) X. B ) = (/) ) | 
						
							| 15 | 14 | rneqd |  |-  ( ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = ran (/) ) | 
						
							| 16 |  | rn0 |  |-  ran (/) = (/) | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = (/) ) | 
						
							| 18 | 11 17 | eqtrid |  |-  ( ( A i^i C ) = (/) -> ( ( A X. B ) " C ) = (/) ) | 
						
							| 19 | 18 | ancli |  |-  ( ( A i^i C ) = (/) -> ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) ) | 
						
							| 20 |  | df-ne |  |-  ( ( A i^i C ) =/= (/) <-> -. ( A i^i C ) = (/) ) | 
						
							| 21 |  | rnxp |  |-  ( ( A i^i C ) =/= (/) -> ran ( ( A i^i C ) X. B ) = B ) | 
						
							| 22 | 20 21 | sylbir |  |-  ( -. ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = B ) | 
						
							| 23 | 11 22 | eqtrid |  |-  ( -. ( A i^i C ) = (/) -> ( ( A X. B ) " C ) = B ) | 
						
							| 24 | 23 | ancli |  |-  ( -. ( A i^i C ) = (/) -> ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) | 
						
							| 25 | 19 24 | orim12i |  |-  ( ( ( A i^i C ) = (/) \/ -. ( A i^i C ) = (/) ) -> ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) ) | 
						
							| 26 | 1 25 | ax-mp |  |-  ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) | 
						
							| 27 |  | eqif |  |-  ( ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) <-> ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) ) | 
						
							| 28 | 26 27 | mpbir |  |-  ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) |