Step |
Hyp |
Ref |
Expression |
1 |
|
exmid |
|- ( ( A i^i C ) = (/) \/ -. ( A i^i C ) = (/) ) |
2 |
|
df-ima |
|- ( ( A X. B ) " C ) = ran ( ( A X. B ) |` C ) |
3 |
|
df-res |
|- ( ( A X. B ) |` C ) = ( ( A X. B ) i^i ( C X. _V ) ) |
4 |
3
|
rneqi |
|- ran ( ( A X. B ) |` C ) = ran ( ( A X. B ) i^i ( C X. _V ) ) |
5 |
2 4
|
eqtri |
|- ( ( A X. B ) " C ) = ran ( ( A X. B ) i^i ( C X. _V ) ) |
6 |
|
inxp |
|- ( ( A X. B ) i^i ( C X. _V ) ) = ( ( A i^i C ) X. ( B i^i _V ) ) |
7 |
6
|
rneqi |
|- ran ( ( A X. B ) i^i ( C X. _V ) ) = ran ( ( A i^i C ) X. ( B i^i _V ) ) |
8 |
|
inv1 |
|- ( B i^i _V ) = B |
9 |
8
|
xpeq2i |
|- ( ( A i^i C ) X. ( B i^i _V ) ) = ( ( A i^i C ) X. B ) |
10 |
9
|
rneqi |
|- ran ( ( A i^i C ) X. ( B i^i _V ) ) = ran ( ( A i^i C ) X. B ) |
11 |
5 7 10
|
3eqtri |
|- ( ( A X. B ) " C ) = ran ( ( A i^i C ) X. B ) |
12 |
|
xpeq1 |
|- ( ( A i^i C ) = (/) -> ( ( A i^i C ) X. B ) = ( (/) X. B ) ) |
13 |
|
0xp |
|- ( (/) X. B ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( ( A i^i C ) = (/) -> ( ( A i^i C ) X. B ) = (/) ) |
15 |
14
|
rneqd |
|- ( ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = ran (/) ) |
16 |
|
rn0 |
|- ran (/) = (/) |
17 |
15 16
|
eqtrdi |
|- ( ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = (/) ) |
18 |
11 17
|
eqtrid |
|- ( ( A i^i C ) = (/) -> ( ( A X. B ) " C ) = (/) ) |
19 |
18
|
ancli |
|- ( ( A i^i C ) = (/) -> ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) ) |
20 |
|
df-ne |
|- ( ( A i^i C ) =/= (/) <-> -. ( A i^i C ) = (/) ) |
21 |
|
rnxp |
|- ( ( A i^i C ) =/= (/) -> ran ( ( A i^i C ) X. B ) = B ) |
22 |
20 21
|
sylbir |
|- ( -. ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = B ) |
23 |
11 22
|
eqtrid |
|- ( -. ( A i^i C ) = (/) -> ( ( A X. B ) " C ) = B ) |
24 |
23
|
ancli |
|- ( -. ( A i^i C ) = (/) -> ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) |
25 |
19 24
|
orim12i |
|- ( ( ( A i^i C ) = (/) \/ -. ( A i^i C ) = (/) ) -> ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) ) |
26 |
1 25
|
ax-mp |
|- ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) |
27 |
|
eqif |
|- ( ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) <-> ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) ) |
28 |
26 27
|
mpbir |
|- ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) |