Description: Direct image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018) (Proof shortened by BJ, 6-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpimasn | |- ( X e. A -> ( ( A X. B ) " { X } ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjsn | |- ( ( A i^i { X } ) = (/) <-> -. X e. A ) |
|
| 2 | 1 | necon3abii | |- ( ( A i^i { X } ) =/= (/) <-> -. -. X e. A ) |
| 3 | notnotb | |- ( X e. A <-> -. -. X e. A ) |
|
| 4 | 2 3 | bitr4i | |- ( ( A i^i { X } ) =/= (/) <-> X e. A ) |
| 5 | xpima2 | |- ( ( A i^i { X } ) =/= (/) -> ( ( A X. B ) " { X } ) = B ) |
|
| 6 | 4 5 | sylbir | |- ( X e. A -> ( ( A X. B ) " { X } ) = B ) |