| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexneg |
|- ( B e. RR -> -e B = -u B ) |
| 2 |
1
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> -e B = -u B ) |
| 3 |
2
|
oveq2d |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = ( ( A +e B ) +e -u B ) ) |
| 4 |
|
renegcl |
|- ( B e. RR -> -u B e. RR ) |
| 5 |
4
|
ad2antlr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> -u B e. RR ) |
| 6 |
|
rexr |
|- ( -u B e. RR -> -u B e. RR* ) |
| 7 |
|
renepnf |
|- ( -u B e. RR -> -u B =/= +oo ) |
| 8 |
|
xaddmnf2 |
|- ( ( -u B e. RR* /\ -u B =/= +oo ) -> ( -oo +e -u B ) = -oo ) |
| 9 |
6 7 8
|
syl2anc |
|- ( -u B e. RR -> ( -oo +e -u B ) = -oo ) |
| 10 |
5 9
|
syl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( -oo +e -u B ) = -oo ) |
| 11 |
|
oveq1 |
|- ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) |
| 12 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 13 |
|
renepnf |
|- ( B e. RR -> B =/= +oo ) |
| 14 |
|
xaddmnf2 |
|- ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) |
| 15 |
12 13 14
|
syl2anc |
|- ( B e. RR -> ( -oo +e B ) = -oo ) |
| 16 |
15
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> ( -oo +e B ) = -oo ) |
| 17 |
11 16
|
sylan9eqr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( A +e B ) = -oo ) |
| 18 |
17
|
oveq1d |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( ( A +e B ) +e -u B ) = ( -oo +e -u B ) ) |
| 19 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> A = -oo ) |
| 20 |
10 18 19
|
3eqtr4d |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( ( A +e B ) +e -u B ) = A ) |
| 21 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> A e. RR* ) |
| 22 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> A =/= -oo ) |
| 23 |
12
|
ad2antlr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. RR* ) |
| 24 |
|
renemnf |
|- ( B e. RR -> B =/= -oo ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B =/= -oo ) |
| 26 |
4
|
ad2antlr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B e. RR ) |
| 27 |
26 6
|
syl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B e. RR* ) |
| 28 |
|
renemnf |
|- ( -u B e. RR -> -u B =/= -oo ) |
| 29 |
26 28
|
syl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B =/= -oo ) |
| 30 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( -u B e. RR* /\ -u B =/= -oo ) ) -> ( ( A +e B ) +e -u B ) = ( A +e ( B +e -u B ) ) ) |
| 31 |
21 22 23 25 27 29 30
|
syl222anc |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( ( A +e B ) +e -u B ) = ( A +e ( B +e -u B ) ) ) |
| 32 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. RR ) |
| 33 |
32 26
|
rexaddd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B +e -u B ) = ( B + -u B ) ) |
| 34 |
32
|
recnd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. CC ) |
| 35 |
34
|
negidd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B + -u B ) = 0 ) |
| 36 |
33 35
|
eqtrd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B +e -u B ) = 0 ) |
| 37 |
36
|
oveq2d |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e ( B +e -u B ) ) = ( A +e 0 ) ) |
| 38 |
|
xaddrid |
|- ( A e. RR* -> ( A +e 0 ) = A ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e 0 ) = A ) |
| 40 |
37 39
|
eqtrd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e ( B +e -u B ) ) = A ) |
| 41 |
31 40
|
eqtrd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( ( A +e B ) +e -u B ) = A ) |
| 42 |
20 41
|
pm2.61dane |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -u B ) = A ) |
| 43 |
3 42
|
eqtrd |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = A ) |