| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexneg |  |-  ( B e. RR -> -e B = -u B ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. RR* /\ B e. RR ) -> -e B = -u B ) | 
						
							| 3 | 2 | oveq2d |  |-  ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = ( ( A +e B ) +e -u B ) ) | 
						
							| 4 |  | renegcl |  |-  ( B e. RR -> -u B e. RR ) | 
						
							| 5 | 4 | ad2antlr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> -u B e. RR ) | 
						
							| 6 |  | rexr |  |-  ( -u B e. RR -> -u B e. RR* ) | 
						
							| 7 |  | renepnf |  |-  ( -u B e. RR -> -u B =/= +oo ) | 
						
							| 8 |  | xaddmnf2 |  |-  ( ( -u B e. RR* /\ -u B =/= +oo ) -> ( -oo +e -u B ) = -oo ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( -u B e. RR -> ( -oo +e -u B ) = -oo ) | 
						
							| 10 | 5 9 | syl |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( -oo +e -u B ) = -oo ) | 
						
							| 11 |  | oveq1 |  |-  ( A = -oo -> ( A +e B ) = ( -oo +e B ) ) | 
						
							| 12 |  | rexr |  |-  ( B e. RR -> B e. RR* ) | 
						
							| 13 |  | renepnf |  |-  ( B e. RR -> B =/= +oo ) | 
						
							| 14 |  | xaddmnf2 |  |-  ( ( B e. RR* /\ B =/= +oo ) -> ( -oo +e B ) = -oo ) | 
						
							| 15 | 12 13 14 | syl2anc |  |-  ( B e. RR -> ( -oo +e B ) = -oo ) | 
						
							| 16 | 15 | adantl |  |-  ( ( A e. RR* /\ B e. RR ) -> ( -oo +e B ) = -oo ) | 
						
							| 17 | 11 16 | sylan9eqr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( A +e B ) = -oo ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( ( A +e B ) +e -u B ) = ( -oo +e -u B ) ) | 
						
							| 19 |  | simpr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> A = -oo ) | 
						
							| 20 | 10 18 19 | 3eqtr4d |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A = -oo ) -> ( ( A +e B ) +e -u B ) = A ) | 
						
							| 21 |  | simpll |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> A e. RR* ) | 
						
							| 22 |  | simpr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> A =/= -oo ) | 
						
							| 23 | 12 | ad2antlr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. RR* ) | 
						
							| 24 |  | renemnf |  |-  ( B e. RR -> B =/= -oo ) | 
						
							| 25 | 24 | ad2antlr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B =/= -oo ) | 
						
							| 26 | 4 | ad2antlr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B e. RR ) | 
						
							| 27 | 26 6 | syl |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B e. RR* ) | 
						
							| 28 |  | renemnf |  |-  ( -u B e. RR -> -u B =/= -oo ) | 
						
							| 29 | 26 28 | syl |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> -u B =/= -oo ) | 
						
							| 30 |  | xaddass |  |-  ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( -u B e. RR* /\ -u B =/= -oo ) ) -> ( ( A +e B ) +e -u B ) = ( A +e ( B +e -u B ) ) ) | 
						
							| 31 | 21 22 23 25 27 29 30 | syl222anc |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( ( A +e B ) +e -u B ) = ( A +e ( B +e -u B ) ) ) | 
						
							| 32 |  | simplr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. RR ) | 
						
							| 33 | 32 26 | rexaddd |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B +e -u B ) = ( B + -u B ) ) | 
						
							| 34 | 32 | recnd |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> B e. CC ) | 
						
							| 35 | 34 | negidd |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B + -u B ) = 0 ) | 
						
							| 36 | 33 35 | eqtrd |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( B +e -u B ) = 0 ) | 
						
							| 37 | 36 | oveq2d |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e ( B +e -u B ) ) = ( A +e 0 ) ) | 
						
							| 38 |  | xaddrid |  |-  ( A e. RR* -> ( A +e 0 ) = A ) | 
						
							| 39 | 38 | ad2antrr |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e 0 ) = A ) | 
						
							| 40 | 37 39 | eqtrd |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( A +e ( B +e -u B ) ) = A ) | 
						
							| 41 | 31 40 | eqtrd |  |-  ( ( ( A e. RR* /\ B e. RR ) /\ A =/= -oo ) -> ( ( A +e B ) +e -u B ) = A ) | 
						
							| 42 | 20 41 | pm2.61dane |  |-  ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -u B ) = A ) | 
						
							| 43 | 3 42 | eqtrd |  |-  ( ( A e. RR* /\ B e. RR ) -> ( ( A +e B ) +e -e B ) = A ) |