Metamath Proof Explorer


Theorem xpnnen

Description: The Cartesian product of the set of positive integers with itself is equinumerous to the set of positive integers. (Contributed by NM, 1-Aug-2004) (Revised by Mario Carneiro, 9-Mar-2013)

Ref Expression
Assertion xpnnen
|- ( NN X. NN ) ~~ NN

Proof

Step Hyp Ref Expression
1 nnenom
 |-  NN ~~ _om
2 xpen
 |-  ( ( NN ~~ _om /\ NN ~~ _om ) -> ( NN X. NN ) ~~ ( _om X. _om ) )
3 1 1 2 mp2an
 |-  ( NN X. NN ) ~~ ( _om X. _om )
4 xpomen
 |-  ( _om X. _om ) ~~ _om
5 4 1 entr4i
 |-  ( _om X. _om ) ~~ NN
6 3 5 entri
 |-  ( NN X. NN ) ~~ NN