Step |
Hyp |
Ref |
Expression |
1 |
|
isnum2 |
|- ( A e. dom card <-> E. x e. On x ~~ A ) |
2 |
|
isnum2 |
|- ( B e. dom card <-> E. y e. On y ~~ B ) |
3 |
|
reeanv |
|- ( E. x e. On E. y e. On ( x ~~ A /\ y ~~ B ) <-> ( E. x e. On x ~~ A /\ E. y e. On y ~~ B ) ) |
4 |
|
omcl |
|- ( ( x e. On /\ y e. On ) -> ( x .o y ) e. On ) |
5 |
|
omxpen |
|- ( ( x e. On /\ y e. On ) -> ( x .o y ) ~~ ( x X. y ) ) |
6 |
|
xpen |
|- ( ( x ~~ A /\ y ~~ B ) -> ( x X. y ) ~~ ( A X. B ) ) |
7 |
|
entr |
|- ( ( ( x .o y ) ~~ ( x X. y ) /\ ( x X. y ) ~~ ( A X. B ) ) -> ( x .o y ) ~~ ( A X. B ) ) |
8 |
5 6 7
|
syl2an |
|- ( ( ( x e. On /\ y e. On ) /\ ( x ~~ A /\ y ~~ B ) ) -> ( x .o y ) ~~ ( A X. B ) ) |
9 |
|
isnumi |
|- ( ( ( x .o y ) e. On /\ ( x .o y ) ~~ ( A X. B ) ) -> ( A X. B ) e. dom card ) |
10 |
4 8 9
|
syl2an2r |
|- ( ( ( x e. On /\ y e. On ) /\ ( x ~~ A /\ y ~~ B ) ) -> ( A X. B ) e. dom card ) |
11 |
10
|
ex |
|- ( ( x e. On /\ y e. On ) -> ( ( x ~~ A /\ y ~~ B ) -> ( A X. B ) e. dom card ) ) |
12 |
11
|
rexlimivv |
|- ( E. x e. On E. y e. On ( x ~~ A /\ y ~~ B ) -> ( A X. B ) e. dom card ) |
13 |
3 12
|
sylbir |
|- ( ( E. x e. On x ~~ A /\ E. y e. On y ~~ B ) -> ( A X. B ) e. dom card ) |
14 |
1 2 13
|
syl2anb |
|- ( ( A e. dom card /\ B e. dom card ) -> ( A X. B ) e. dom card ) |