| Step | Hyp | Ref | Expression | 
						
							| 1 |  | n0 |  |-  ( A =/= (/) <-> E. x x e. A ) | 
						
							| 2 |  | n0 |  |-  ( B =/= (/) <-> E. y y e. B ) | 
						
							| 3 | 1 2 | anbi12i |  |-  ( ( A =/= (/) /\ B =/= (/) ) <-> ( E. x x e. A /\ E. y y e. B ) ) | 
						
							| 4 |  | exdistrv |  |-  ( E. x E. y ( x e. A /\ y e. B ) <-> ( E. x x e. A /\ E. y y e. B ) ) | 
						
							| 5 | 3 4 | bitr4i |  |-  ( ( A =/= (/) /\ B =/= (/) ) <-> E. x E. y ( x e. A /\ y e. B ) ) | 
						
							| 6 |  | opex |  |-  <. x , y >. e. _V | 
						
							| 7 |  | eleq1 |  |-  ( z = <. x , y >. -> ( z e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) | 
						
							| 8 |  | opelxp |  |-  ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) | 
						
							| 9 | 7 8 | bitrdi |  |-  ( z = <. x , y >. -> ( z e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) ) | 
						
							| 10 | 6 9 | spcev |  |-  ( ( x e. A /\ y e. B ) -> E. z z e. ( A X. B ) ) | 
						
							| 11 |  | n0 |  |-  ( ( A X. B ) =/= (/) <-> E. z z e. ( A X. B ) ) | 
						
							| 12 | 10 11 | sylibr |  |-  ( ( x e. A /\ y e. B ) -> ( A X. B ) =/= (/) ) | 
						
							| 13 | 12 | exlimivv |  |-  ( E. x E. y ( x e. A /\ y e. B ) -> ( A X. B ) =/= (/) ) | 
						
							| 14 | 5 13 | sylbi |  |-  ( ( A =/= (/) /\ B =/= (/) ) -> ( A X. B ) =/= (/) ) | 
						
							| 15 |  | xpeq1 |  |-  ( A = (/) -> ( A X. B ) = ( (/) X. B ) ) | 
						
							| 16 |  | 0xp |  |-  ( (/) X. B ) = (/) | 
						
							| 17 | 15 16 | eqtrdi |  |-  ( A = (/) -> ( A X. B ) = (/) ) | 
						
							| 18 | 17 | necon3i |  |-  ( ( A X. B ) =/= (/) -> A =/= (/) ) | 
						
							| 19 |  | xpeq2 |  |-  ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) | 
						
							| 20 |  | xp0 |  |-  ( A X. (/) ) = (/) | 
						
							| 21 | 19 20 | eqtrdi |  |-  ( B = (/) -> ( A X. B ) = (/) ) | 
						
							| 22 | 21 | necon3i |  |-  ( ( A X. B ) =/= (/) -> B =/= (/) ) | 
						
							| 23 | 18 22 | jca |  |-  ( ( A X. B ) =/= (/) -> ( A =/= (/) /\ B =/= (/) ) ) | 
						
							| 24 | 14 23 | impbii |  |-  ( ( A =/= (/) /\ B =/= (/) ) <-> ( A X. B ) =/= (/) ) |