Metamath Proof Explorer


Theorem xpord2ind

Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)

Ref Expression
Hypotheses xpord2ind.1
|- R Fr A
xpord2ind.2
|- R Po A
xpord2ind.3
|- R Se A
xpord2ind.4
|- S Fr B
xpord2ind.5
|- S Po B
xpord2ind.6
|- S Se B
xpord2ind.7
|- ( a = c -> ( ph <-> ps ) )
xpord2ind.8
|- ( b = d -> ( ps <-> ch ) )
xpord2ind.9
|- ( a = c -> ( th <-> ch ) )
xpord2ind.11
|- ( a = X -> ( ph <-> ta ) )
xpord2ind.12
|- ( b = Y -> ( ta <-> et ) )
xpord2ind.i
|- ( ( a e. A /\ b e. B ) -> ( ( A. c e. Pred ( R , A , a ) A. d e. Pred ( S , B , b ) ch /\ A. c e. Pred ( R , A , a ) ps /\ A. d e. Pred ( S , B , b ) th ) -> ph ) )
Assertion xpord2ind
|- ( ( X e. A /\ Y e. B ) -> et )

Proof

Step Hyp Ref Expression
1 xpord2ind.1
 |-  R Fr A
2 xpord2ind.2
 |-  R Po A
3 xpord2ind.3
 |-  R Se A
4 xpord2ind.4
 |-  S Fr B
5 xpord2ind.5
 |-  S Po B
6 xpord2ind.6
 |-  S Se B
7 xpord2ind.7
 |-  ( a = c -> ( ph <-> ps ) )
8 xpord2ind.8
 |-  ( b = d -> ( ps <-> ch ) )
9 xpord2ind.9
 |-  ( a = c -> ( th <-> ch ) )
10 xpord2ind.11
 |-  ( a = X -> ( ph <-> ta ) )
11 xpord2ind.12
 |-  ( b = Y -> ( ta <-> et ) )
12 xpord2ind.i
 |-  ( ( a e. A /\ b e. B ) -> ( ( A. c e. Pred ( R , A , a ) A. d e. Pred ( S , B , b ) ch /\ A. c e. Pred ( R , A , a ) ps /\ A. d e. Pred ( S , B , b ) th ) -> ph ) )
13 eqid
 |-  { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) }
14 13 1 2 3 4 5 6 7 8 9 10 11 12 xpord2indlem
 |-  ( ( X e. A /\ Y e. B ) -> et )