Description: Induction over the Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 22-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpord2ind.1 | |- R Fr A |
|
xpord2ind.2 | |- R Po A |
||
xpord2ind.3 | |- R Se A |
||
xpord2ind.4 | |- S Fr B |
||
xpord2ind.5 | |- S Po B |
||
xpord2ind.6 | |- S Se B |
||
xpord2ind.7 | |- ( a = c -> ( ph <-> ps ) ) |
||
xpord2ind.8 | |- ( b = d -> ( ps <-> ch ) ) |
||
xpord2ind.9 | |- ( a = c -> ( th <-> ch ) ) |
||
xpord2ind.11 | |- ( a = X -> ( ph <-> ta ) ) |
||
xpord2ind.12 | |- ( b = Y -> ( ta <-> et ) ) |
||
xpord2ind.i | |- ( ( a e. A /\ b e. B ) -> ( ( A. c e. Pred ( R , A , a ) A. d e. Pred ( S , B , b ) ch /\ A. c e. Pred ( R , A , a ) ps /\ A. d e. Pred ( S , B , b ) th ) -> ph ) ) |
||
Assertion | xpord2ind | |- ( ( X e. A /\ Y e. B ) -> et ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpord2ind.1 | |- R Fr A |
|
2 | xpord2ind.2 | |- R Po A |
|
3 | xpord2ind.3 | |- R Se A |
|
4 | xpord2ind.4 | |- S Fr B |
|
5 | xpord2ind.5 | |- S Po B |
|
6 | xpord2ind.6 | |- S Se B |
|
7 | xpord2ind.7 | |- ( a = c -> ( ph <-> ps ) ) |
|
8 | xpord2ind.8 | |- ( b = d -> ( ps <-> ch ) ) |
|
9 | xpord2ind.9 | |- ( a = c -> ( th <-> ch ) ) |
|
10 | xpord2ind.11 | |- ( a = X -> ( ph <-> ta ) ) |
|
11 | xpord2ind.12 | |- ( b = Y -> ( ta <-> et ) ) |
|
12 | xpord2ind.i | |- ( ( a e. A /\ b e. B ) -> ( ( A. c e. Pred ( R , A , a ) A. d e. Pred ( S , B , b ) ch /\ A. c e. Pred ( R , A , a ) ps /\ A. d e. Pred ( S , B , b ) th ) -> ph ) ) |
|
13 | eqid | |- { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( A X. B ) /\ y e. ( A X. B ) /\ ( ( ( 1st ` x ) R ( 1st ` y ) \/ ( 1st ` x ) = ( 1st ` y ) ) /\ ( ( 2nd ` x ) S ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) /\ x =/= y ) ) } |
|
14 | 13 1 2 3 4 5 6 7 8 9 10 11 12 | xpord2indlem | |- ( ( X e. A /\ Y e. B ) -> et ) |