Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpord3indd.x | |- ( ka -> X e. A ) |
|
xpord3indd.y | |- ( ka -> Y e. B ) |
||
xpord3indd.z | |- ( ka -> Z e. C ) |
||
xpord3indd.1 | |- ( ka -> R Fr A ) |
||
xpord3indd.2 | |- ( ka -> R Po A ) |
||
xpord3indd.3 | |- ( ka -> R Se A ) |
||
xpord3indd.4 | |- ( ka -> S Fr B ) |
||
xpord3indd.5 | |- ( ka -> S Po B ) |
||
xpord3indd.6 | |- ( ka -> S Se B ) |
||
xpord3indd.7 | |- ( ka -> T Fr C ) |
||
xpord3indd.8 | |- ( ka -> T Po C ) |
||
xpord3indd.9 | |- ( ka -> T Se C ) |
||
xpord3indd.10 | |- ( a = d -> ( ph <-> ps ) ) |
||
xpord3indd.11 | |- ( b = e -> ( ps <-> ch ) ) |
||
xpord3indd.12 | |- ( c = f -> ( ch <-> th ) ) |
||
xpord3indd.13 | |- ( a = d -> ( ta <-> th ) ) |
||
xpord3indd.14 | |- ( b = e -> ( et <-> ta ) ) |
||
xpord3indd.15 | |- ( b = e -> ( ze <-> th ) ) |
||
xpord3indd.16 | |- ( c = f -> ( si <-> ta ) ) |
||
xpord3indd.17 | |- ( a = X -> ( ph <-> rh ) ) |
||
xpord3indd.18 | |- ( b = Y -> ( rh <-> mu ) ) |
||
xpord3indd.19 | |- ( c = Z -> ( mu <-> la ) ) |
||
xpord3indd.i | |- ( ( ka /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( ( A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) th /\ A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) ch /\ A. d e. Pred ( R , A , a ) A. f e. Pred ( T , C , c ) ze ) /\ ( A. d e. Pred ( R , A , a ) ps /\ A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) ta /\ A. e e. Pred ( S , B , b ) si ) /\ A. f e. Pred ( T , C , c ) et ) -> ph ) ) |
||
Assertion | xpord3indd | |- ( ka -> la ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpord3indd.x | |- ( ka -> X e. A ) |
|
2 | xpord3indd.y | |- ( ka -> Y e. B ) |
|
3 | xpord3indd.z | |- ( ka -> Z e. C ) |
|
4 | xpord3indd.1 | |- ( ka -> R Fr A ) |
|
5 | xpord3indd.2 | |- ( ka -> R Po A ) |
|
6 | xpord3indd.3 | |- ( ka -> R Se A ) |
|
7 | xpord3indd.4 | |- ( ka -> S Fr B ) |
|
8 | xpord3indd.5 | |- ( ka -> S Po B ) |
|
9 | xpord3indd.6 | |- ( ka -> S Se B ) |
|
10 | xpord3indd.7 | |- ( ka -> T Fr C ) |
|
11 | xpord3indd.8 | |- ( ka -> T Po C ) |
|
12 | xpord3indd.9 | |- ( ka -> T Se C ) |
|
13 | xpord3indd.10 | |- ( a = d -> ( ph <-> ps ) ) |
|
14 | xpord3indd.11 | |- ( b = e -> ( ps <-> ch ) ) |
|
15 | xpord3indd.12 | |- ( c = f -> ( ch <-> th ) ) |
|
16 | xpord3indd.13 | |- ( a = d -> ( ta <-> th ) ) |
|
17 | xpord3indd.14 | |- ( b = e -> ( et <-> ta ) ) |
|
18 | xpord3indd.15 | |- ( b = e -> ( ze <-> th ) ) |
|
19 | xpord3indd.16 | |- ( c = f -> ( si <-> ta ) ) |
|
20 | xpord3indd.17 | |- ( a = X -> ( ph <-> rh ) ) |
|
21 | xpord3indd.18 | |- ( b = Y -> ( rh <-> mu ) ) |
|
22 | xpord3indd.19 | |- ( c = Z -> ( mu <-> la ) ) |
|
23 | xpord3indd.i | |- ( ( ka /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( ( A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) th /\ A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) ch /\ A. d e. Pred ( R , A , a ) A. f e. Pred ( T , C , c ) ze ) /\ ( A. d e. Pred ( R , A , a ) ps /\ A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) ta /\ A. e e. Pred ( S , B , b ) si ) /\ A. f e. Pred ( T , C , c ) et ) -> ph ) ) |
|
24 | eqid | |- { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } |
|
25 | 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | xpord3inddlem | |- ( ka -> la ) |