Metamath Proof Explorer


Theorem xpord3indd

Description: Induction over the triple Cartesian product ordering. Note that the substitutions cover all possible cases of membership in the predecessor class. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypotheses xpord3indd.x
|- ( ka -> X e. A )
xpord3indd.y
|- ( ka -> Y e. B )
xpord3indd.z
|- ( ka -> Z e. C )
xpord3indd.1
|- ( ka -> R Fr A )
xpord3indd.2
|- ( ka -> R Po A )
xpord3indd.3
|- ( ka -> R Se A )
xpord3indd.4
|- ( ka -> S Fr B )
xpord3indd.5
|- ( ka -> S Po B )
xpord3indd.6
|- ( ka -> S Se B )
xpord3indd.7
|- ( ka -> T Fr C )
xpord3indd.8
|- ( ka -> T Po C )
xpord3indd.9
|- ( ka -> T Se C )
xpord3indd.10
|- ( a = d -> ( ph <-> ps ) )
xpord3indd.11
|- ( b = e -> ( ps <-> ch ) )
xpord3indd.12
|- ( c = f -> ( ch <-> th ) )
xpord3indd.13
|- ( a = d -> ( ta <-> th ) )
xpord3indd.14
|- ( b = e -> ( et <-> ta ) )
xpord3indd.15
|- ( b = e -> ( ze <-> th ) )
xpord3indd.16
|- ( c = f -> ( si <-> ta ) )
xpord3indd.17
|- ( a = X -> ( ph <-> rh ) )
xpord3indd.18
|- ( b = Y -> ( rh <-> mu ) )
xpord3indd.19
|- ( c = Z -> ( mu <-> la ) )
xpord3indd.i
|- ( ( ka /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( ( A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) th /\ A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) ch /\ A. d e. Pred ( R , A , a ) A. f e. Pred ( T , C , c ) ze ) /\ ( A. d e. Pred ( R , A , a ) ps /\ A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) ta /\ A. e e. Pred ( S , B , b ) si ) /\ A. f e. Pred ( T , C , c ) et ) -> ph ) )
Assertion xpord3indd
|- ( ka -> la )

Proof

Step Hyp Ref Expression
1 xpord3indd.x
 |-  ( ka -> X e. A )
2 xpord3indd.y
 |-  ( ka -> Y e. B )
3 xpord3indd.z
 |-  ( ka -> Z e. C )
4 xpord3indd.1
 |-  ( ka -> R Fr A )
5 xpord3indd.2
 |-  ( ka -> R Po A )
6 xpord3indd.3
 |-  ( ka -> R Se A )
7 xpord3indd.4
 |-  ( ka -> S Fr B )
8 xpord3indd.5
 |-  ( ka -> S Po B )
9 xpord3indd.6
 |-  ( ka -> S Se B )
10 xpord3indd.7
 |-  ( ka -> T Fr C )
11 xpord3indd.8
 |-  ( ka -> T Po C )
12 xpord3indd.9
 |-  ( ka -> T Se C )
13 xpord3indd.10
 |-  ( a = d -> ( ph <-> ps ) )
14 xpord3indd.11
 |-  ( b = e -> ( ps <-> ch ) )
15 xpord3indd.12
 |-  ( c = f -> ( ch <-> th ) )
16 xpord3indd.13
 |-  ( a = d -> ( ta <-> th ) )
17 xpord3indd.14
 |-  ( b = e -> ( et <-> ta ) )
18 xpord3indd.15
 |-  ( b = e -> ( ze <-> th ) )
19 xpord3indd.16
 |-  ( c = f -> ( si <-> ta ) )
20 xpord3indd.17
 |-  ( a = X -> ( ph <-> rh ) )
21 xpord3indd.18
 |-  ( b = Y -> ( rh <-> mu ) )
22 xpord3indd.19
 |-  ( c = Z -> ( mu <-> la ) )
23 xpord3indd.i
 |-  ( ( ka /\ ( a e. A /\ b e. B /\ c e. C ) ) -> ( ( ( A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) th /\ A. d e. Pred ( R , A , a ) A. e e. Pred ( S , B , b ) ch /\ A. d e. Pred ( R , A , a ) A. f e. Pred ( T , C , c ) ze ) /\ ( A. d e. Pred ( R , A , a ) ps /\ A. e e. Pred ( S , B , b ) A. f e. Pred ( T , C , c ) ta /\ A. e e. Pred ( S , B , b ) si ) /\ A. f e. Pred ( T , C , c ) et ) -> ph ) )
24 eqid
 |-  { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) } = { <. x , y >. | ( x e. ( ( A X. B ) X. C ) /\ y e. ( ( A X. B ) X. C ) /\ ( ( ( ( 1st ` ( 1st ` x ) ) R ( 1st ` ( 1st ` y ) ) \/ ( 1st ` ( 1st ` x ) ) = ( 1st ` ( 1st ` y ) ) ) /\ ( ( 2nd ` ( 1st ` x ) ) S ( 2nd ` ( 1st ` y ) ) \/ ( 2nd ` ( 1st ` x ) ) = ( 2nd ` ( 1st ` y ) ) ) /\ ( ( 2nd ` x ) T ( 2nd ` y ) \/ ( 2nd ` x ) = ( 2nd ` y ) ) ) /\ x =/= y ) ) }
25 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 xpord3inddlem
 |-  ( ka -> la )