Step |
Hyp |
Ref |
Expression |
1 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
2 |
|
xaddcl |
|- ( ( A e. RR* /\ -e B e. RR* ) -> ( A +e -e B ) e. RR* ) |
3 |
1 2
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e -e B ) e. RR* ) |
4 |
|
xlt0neg1 |
|- ( ( A +e -e B ) e. RR* -> ( ( A +e -e B ) < 0 <-> 0 < -e ( A +e -e B ) ) ) |
5 |
3 4
|
syl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A +e -e B ) < 0 <-> 0 < -e ( A +e -e B ) ) ) |
6 |
|
xsubge0 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
7 |
6
|
notbid |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -. 0 <_ ( A +e -e B ) <-> -. B <_ A ) ) |
8 |
|
0xr |
|- 0 e. RR* |
9 |
|
xrltnle |
|- ( ( ( A +e -e B ) e. RR* /\ 0 e. RR* ) -> ( ( A +e -e B ) < 0 <-> -. 0 <_ ( A +e -e B ) ) ) |
10 |
3 8 9
|
sylancl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A +e -e B ) < 0 <-> -. 0 <_ ( A +e -e B ) ) ) |
11 |
|
xrltnle |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> -. B <_ A ) ) |
12 |
7 10 11
|
3bitr4d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( ( A +e -e B ) < 0 <-> A < B ) ) |
13 |
|
xnegdi |
|- ( ( A e. RR* /\ -e B e. RR* ) -> -e ( A +e -e B ) = ( -e A +e -e -e B ) ) |
14 |
1 13
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e -e B ) = ( -e A +e -e -e B ) ) |
15 |
|
xnegneg |
|- ( B e. RR* -> -e -e B = B ) |
16 |
15
|
oveq2d |
|- ( B e. RR* -> ( -e A +e -e -e B ) = ( -e A +e B ) ) |
17 |
16
|
adantl |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A +e -e -e B ) = ( -e A +e B ) ) |
18 |
|
xnegcl |
|- ( A e. RR* -> -e A e. RR* ) |
19 |
|
xaddcom |
|- ( ( -e A e. RR* /\ B e. RR* ) -> ( -e A +e B ) = ( B +e -e A ) ) |
20 |
18 19
|
sylan |
|- ( ( A e. RR* /\ B e. RR* ) -> ( -e A +e B ) = ( B +e -e A ) ) |
21 |
14 17 20
|
3eqtrd |
|- ( ( A e. RR* /\ B e. RR* ) -> -e ( A +e -e B ) = ( B +e -e A ) ) |
22 |
21
|
breq2d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( 0 < -e ( A +e -e B ) <-> 0 < ( B +e -e A ) ) ) |
23 |
5 12 22
|
3bitr3d |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B <-> 0 < ( B +e -e A ) ) ) |