Step |
Hyp |
Ref |
Expression |
1 |
|
xppreima2.1 |
|- ( ph -> F : A --> B ) |
2 |
|
xppreima2.2 |
|- ( ph -> G : A --> C ) |
3 |
|
xppreima2.3 |
|- H = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) |
4 |
3
|
funmpt2 |
|- Fun H |
5 |
1
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. B ) |
6 |
2
|
ffvelrnda |
|- ( ( ph /\ x e. A ) -> ( G ` x ) e. C ) |
7 |
|
opelxp |
|- ( <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) <-> ( ( F ` x ) e. B /\ ( G ` x ) e. C ) ) |
8 |
5 6 7
|
sylanbrc |
|- ( ( ph /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
9 |
8 3
|
fmptd |
|- ( ph -> H : A --> ( B X. C ) ) |
10 |
9
|
frnd |
|- ( ph -> ran H C_ ( B X. C ) ) |
11 |
|
xpss |
|- ( B X. C ) C_ ( _V X. _V ) |
12 |
10 11
|
sstrdi |
|- ( ph -> ran H C_ ( _V X. _V ) ) |
13 |
|
xppreima |
|- ( ( Fun H /\ ran H C_ ( _V X. _V ) ) -> ( `' H " ( Y X. Z ) ) = ( ( `' ( 1st o. H ) " Y ) i^i ( `' ( 2nd o. H ) " Z ) ) ) |
14 |
4 12 13
|
sylancr |
|- ( ph -> ( `' H " ( Y X. Z ) ) = ( ( `' ( 1st o. H ) " Y ) i^i ( `' ( 2nd o. H ) " Z ) ) ) |
15 |
|
fo1st |
|- 1st : _V -onto-> _V |
16 |
|
fofn |
|- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
17 |
15 16
|
ax-mp |
|- 1st Fn _V |
18 |
|
opex |
|- <. ( F ` x ) , ( G ` x ) >. e. _V |
19 |
18 3
|
fnmpti |
|- H Fn A |
20 |
|
ssv |
|- ran H C_ _V |
21 |
|
fnco |
|- ( ( 1st Fn _V /\ H Fn A /\ ran H C_ _V ) -> ( 1st o. H ) Fn A ) |
22 |
17 19 20 21
|
mp3an |
|- ( 1st o. H ) Fn A |
23 |
22
|
a1i |
|- ( ph -> ( 1st o. H ) Fn A ) |
24 |
1
|
ffnd |
|- ( ph -> F Fn A ) |
25 |
4
|
a1i |
|- ( ( ph /\ x e. A ) -> Fun H ) |
26 |
12
|
adantr |
|- ( ( ph /\ x e. A ) -> ran H C_ ( _V X. _V ) ) |
27 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
28 |
18 3
|
dmmpti |
|- dom H = A |
29 |
27 28
|
eleqtrrdi |
|- ( ( ph /\ x e. A ) -> x e. dom H ) |
30 |
|
opfv |
|- ( ( ( Fun H /\ ran H C_ ( _V X. _V ) ) /\ x e. dom H ) -> ( H ` x ) = <. ( ( 1st o. H ) ` x ) , ( ( 2nd o. H ) ` x ) >. ) |
31 |
25 26 29 30
|
syl21anc |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = <. ( ( 1st o. H ) ` x ) , ( ( 2nd o. H ) ` x ) >. ) |
32 |
3
|
fvmpt2 |
|- ( ( x e. A /\ <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) -> ( H ` x ) = <. ( F ` x ) , ( G ` x ) >. ) |
33 |
27 8 32
|
syl2anc |
|- ( ( ph /\ x e. A ) -> ( H ` x ) = <. ( F ` x ) , ( G ` x ) >. ) |
34 |
31 33
|
eqtr3d |
|- ( ( ph /\ x e. A ) -> <. ( ( 1st o. H ) ` x ) , ( ( 2nd o. H ) ` x ) >. = <. ( F ` x ) , ( G ` x ) >. ) |
35 |
|
fvex |
|- ( ( 1st o. H ) ` x ) e. _V |
36 |
|
fvex |
|- ( ( 2nd o. H ) ` x ) e. _V |
37 |
35 36
|
opth |
|- ( <. ( ( 1st o. H ) ` x ) , ( ( 2nd o. H ) ` x ) >. = <. ( F ` x ) , ( G ` x ) >. <-> ( ( ( 1st o. H ) ` x ) = ( F ` x ) /\ ( ( 2nd o. H ) ` x ) = ( G ` x ) ) ) |
38 |
34 37
|
sylib |
|- ( ( ph /\ x e. A ) -> ( ( ( 1st o. H ) ` x ) = ( F ` x ) /\ ( ( 2nd o. H ) ` x ) = ( G ` x ) ) ) |
39 |
38
|
simpld |
|- ( ( ph /\ x e. A ) -> ( ( 1st o. H ) ` x ) = ( F ` x ) ) |
40 |
23 24 39
|
eqfnfvd |
|- ( ph -> ( 1st o. H ) = F ) |
41 |
40
|
cnveqd |
|- ( ph -> `' ( 1st o. H ) = `' F ) |
42 |
41
|
imaeq1d |
|- ( ph -> ( `' ( 1st o. H ) " Y ) = ( `' F " Y ) ) |
43 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
44 |
|
fofn |
|- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
45 |
43 44
|
ax-mp |
|- 2nd Fn _V |
46 |
|
fnco |
|- ( ( 2nd Fn _V /\ H Fn A /\ ran H C_ _V ) -> ( 2nd o. H ) Fn A ) |
47 |
45 19 20 46
|
mp3an |
|- ( 2nd o. H ) Fn A |
48 |
47
|
a1i |
|- ( ph -> ( 2nd o. H ) Fn A ) |
49 |
2
|
ffnd |
|- ( ph -> G Fn A ) |
50 |
38
|
simprd |
|- ( ( ph /\ x e. A ) -> ( ( 2nd o. H ) ` x ) = ( G ` x ) ) |
51 |
48 49 50
|
eqfnfvd |
|- ( ph -> ( 2nd o. H ) = G ) |
52 |
51
|
cnveqd |
|- ( ph -> `' ( 2nd o. H ) = `' G ) |
53 |
52
|
imaeq1d |
|- ( ph -> ( `' ( 2nd o. H ) " Z ) = ( `' G " Z ) ) |
54 |
42 53
|
ineq12d |
|- ( ph -> ( ( `' ( 1st o. H ) " Y ) i^i ( `' ( 2nd o. H ) " Z ) ) = ( ( `' F " Y ) i^i ( `' G " Z ) ) ) |
55 |
14 54
|
eqtrd |
|- ( ph -> ( `' H " ( Y X. Z ) ) = ( ( `' F " Y ) i^i ( `' G " Z ) ) ) |