| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iineq1 |  |-  ( A = (/) -> |^|_ x e. A B = |^|_ x e. (/) B ) | 
						
							| 2 |  | 0iin |  |-  |^|_ x e. (/) B = _V | 
						
							| 3 | 1 2 | eqtrdi |  |-  ( A = (/) -> |^|_ x e. A B = _V ) | 
						
							| 4 | 3 | ineq2d |  |-  ( A = (/) -> ( D i^i |^|_ x e. A B ) = ( D i^i _V ) ) | 
						
							| 5 |  | inv1 |  |-  ( D i^i _V ) = D | 
						
							| 6 | 4 5 | eqtrdi |  |-  ( A = (/) -> ( D i^i |^|_ x e. A B ) = D ) | 
						
							| 7 | 6 | xpeq2d |  |-  ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( C X. D ) ) | 
						
							| 8 |  | iineq1 |  |-  ( A = (/) -> |^|_ x e. A ( C X. B ) = |^|_ x e. (/) ( C X. B ) ) | 
						
							| 9 |  | 0iin |  |-  |^|_ x e. (/) ( C X. B ) = _V | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( A = (/) -> |^|_ x e. A ( C X. B ) = _V ) | 
						
							| 11 | 10 | ineq2d |  |-  ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( ( C X. D ) i^i _V ) ) | 
						
							| 12 |  | inv1 |  |-  ( ( C X. D ) i^i _V ) = ( C X. D ) | 
						
							| 13 | 11 12 | eqtrdi |  |-  ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( C X. D ) ) | 
						
							| 14 | 7 13 | eqtr4d |  |-  ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) | 
						
							| 15 |  | xpindi |  |-  ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) | 
						
							| 16 |  | xpiindi |  |-  ( A =/= (/) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) | 
						
							| 17 | 16 | ineq2d |  |-  ( A =/= (/) -> ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) | 
						
							| 18 | 15 17 | eqtrid |  |-  ( A =/= (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) | 
						
							| 19 | 14 18 | pm2.61ine |  |-  ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) |