Step |
Hyp |
Ref |
Expression |
1 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A B = |^|_ x e. (/) B ) |
2 |
|
0iin |
|- |^|_ x e. (/) B = _V |
3 |
1 2
|
eqtrdi |
|- ( A = (/) -> |^|_ x e. A B = _V ) |
4 |
3
|
ineq2d |
|- ( A = (/) -> ( D i^i |^|_ x e. A B ) = ( D i^i _V ) ) |
5 |
|
inv1 |
|- ( D i^i _V ) = D |
6 |
4 5
|
eqtrdi |
|- ( A = (/) -> ( D i^i |^|_ x e. A B ) = D ) |
7 |
6
|
xpeq2d |
|- ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( C X. D ) ) |
8 |
|
iineq1 |
|- ( A = (/) -> |^|_ x e. A ( C X. B ) = |^|_ x e. (/) ( C X. B ) ) |
9 |
|
0iin |
|- |^|_ x e. (/) ( C X. B ) = _V |
10 |
8 9
|
eqtrdi |
|- ( A = (/) -> |^|_ x e. A ( C X. B ) = _V ) |
11 |
10
|
ineq2d |
|- ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( ( C X. D ) i^i _V ) ) |
12 |
|
inv1 |
|- ( ( C X. D ) i^i _V ) = ( C X. D ) |
13 |
11 12
|
eqtrdi |
|- ( A = (/) -> ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) = ( C X. D ) ) |
14 |
7 13
|
eqtr4d |
|- ( A = (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
15 |
|
xpindi |
|- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) |
16 |
|
xpiindi |
|- ( A =/= (/) -> ( C X. |^|_ x e. A B ) = |^|_ x e. A ( C X. B ) ) |
17 |
16
|
ineq2d |
|- ( A =/= (/) -> ( ( C X. D ) i^i ( C X. |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
18 |
15 17
|
eqtrid |
|- ( A =/= (/) -> ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) ) |
19 |
14 18
|
pm2.61ine |
|- ( C X. ( D i^i |^|_ x e. A B ) ) = ( ( C X. D ) i^i |^|_ x e. A ( C X. B ) ) |