| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsds.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsds.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsds.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsds.1 |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | xpsds.2 |  |-  ( ph -> S e. W ) | 
						
							| 6 |  | xpsds.p |  |-  P = ( dist ` T ) | 
						
							| 7 |  | eqid |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 9 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 10 | 1 2 3 4 5 7 8 9 | xpsval |  |-  ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 11 | 1 2 3 4 5 7 8 9 | xpsrnbas |  |-  ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 12 | 7 | xpsff1o2 |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) | 
						
							| 14 |  | f1ocnv |  |-  ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 15 |  | f1ofo |  |-  ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) | 
						
							| 17 |  | ovexd |  |-  ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) | 
						
							| 18 |  | eqid |  |-  ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) | 
						
							| 19 | 10 11 16 17 18 6 | imasdsfn |  |-  ( ph -> P Fn ( ( X X. Y ) X. ( X X. Y ) ) ) |