| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsds.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsds.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsds.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsds.1 |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | xpsds.2 |  |-  ( ph -> S e. W ) | 
						
							| 6 |  | xpsds.p |  |-  P = ( dist ` T ) | 
						
							| 7 | 1 2 3 4 5 6 | xpsdsfn |  |-  ( ph -> P Fn ( ( X X. Y ) X. ( X X. Y ) ) ) | 
						
							| 8 | 1 2 3 4 5 | xpsbas |  |-  ( ph -> ( X X. Y ) = ( Base ` T ) ) | 
						
							| 9 | 8 | sqxpeqd |  |-  ( ph -> ( ( X X. Y ) X. ( X X. Y ) ) = ( ( Base ` T ) X. ( Base ` T ) ) ) | 
						
							| 10 | 9 | fneq2d |  |-  ( ph -> ( P Fn ( ( X X. Y ) X. ( X X. Y ) ) <-> P Fn ( ( Base ` T ) X. ( Base ` T ) ) ) ) | 
						
							| 11 | 7 10 | mpbid |  |-  ( ph -> P Fn ( ( Base ` T ) X. ( Base ` T ) ) ) |