Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( G ` (/) ) e. _V |
2 |
|
fvex |
|- ( G ` 1o ) e. _V |
3 |
|
fnpr2o |
|- ( ( ( G ` (/) ) e. _V /\ ( G ` 1o ) e. _V ) -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o ) |
4 |
1 2 3
|
mp2an |
|- { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o |
5 |
4
|
a1i |
|- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } Fn 2o ) |
6 |
|
id |
|- ( G Fn 2o -> G Fn 2o ) |
7 |
|
elpri |
|- ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) |
8 |
|
df2o3 |
|- 2o = { (/) , 1o } |
9 |
7 8
|
eleq2s |
|- ( k e. 2o -> ( k = (/) \/ k = 1o ) ) |
10 |
|
fvpr0o |
|- ( ( G ` (/) ) e. _V -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) = ( G ` (/) ) ) |
11 |
1 10
|
ax-mp |
|- ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) = ( G ` (/) ) |
12 |
|
fveq2 |
|- ( k = (/) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` (/) ) ) |
13 |
|
fveq2 |
|- ( k = (/) -> ( G ` k ) = ( G ` (/) ) ) |
14 |
11 12 13
|
3eqtr4a |
|- ( k = (/) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
15 |
|
fvpr1o |
|- ( ( G ` 1o ) e. _V -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) = ( G ` 1o ) ) |
16 |
2 15
|
ax-mp |
|- ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) = ( G ` 1o ) |
17 |
|
fveq2 |
|- ( k = 1o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` 1o ) ) |
18 |
|
fveq2 |
|- ( k = 1o -> ( G ` k ) = ( G ` 1o ) ) |
19 |
16 17 18
|
3eqtr4a |
|- ( k = 1o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
20 |
14 19
|
jaoi |
|- ( ( k = (/) \/ k = 1o ) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
21 |
9 20
|
syl |
|- ( k e. 2o -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
22 |
21
|
adantl |
|- ( ( G Fn 2o /\ k e. 2o ) -> ( { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } ` k ) = ( G ` k ) ) |
23 |
5 6 22
|
eqfnfvd |
|- ( G Fn 2o -> { <. (/) , ( G ` (/) ) >. , <. 1o , ( G ` 1o ) >. } = G ) |