Description: A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | xpsff1o.f | |- F = ( x e. A , y e. B |-> { <. (/) , x >. , <. 1o , y >. } ) | |
| Assertion | xpsfrn | |- ran F = X_ k e. 2o if ( k = (/) , A , B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpsff1o.f |  |-  F = ( x e. A , y e. B |-> { <. (/) , x >. , <. 1o , y >. } ) | |
| 2 | 1 | xpsff1o | |- F : ( A X. B ) -1-1-onto-> X_ k e. 2o if ( k = (/) , A , B ) | 
| 3 | f1ofo | |- ( F : ( A X. B ) -1-1-onto-> X_ k e. 2o if ( k = (/) , A , B ) -> F : ( A X. B ) -onto-> X_ k e. 2o if ( k = (/) , A , B ) ) | |
| 4 | forn | |- ( F : ( A X. B ) -onto-> X_ k e. 2o if ( k = (/) , A , B ) -> ran F = X_ k e. 2o if ( k = (/) , A , B ) ) | |
| 5 | 2 3 4 | mp2b | |- ran F = X_ k e. 2o if ( k = (/) , A , B ) |