| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elixp2 |  |-  ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) | 
						
							| 2 |  | 3ancoma |  |-  ( ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) | 
						
							| 3 |  | 2onn |  |-  2o e. _om | 
						
							| 4 |  | nnfi |  |-  ( 2o e. _om -> 2o e. Fin ) | 
						
							| 5 | 3 4 | ax-mp |  |-  2o e. Fin | 
						
							| 6 |  | fnfi |  |-  ( ( G Fn 2o /\ 2o e. Fin ) -> G e. Fin ) | 
						
							| 7 | 5 6 | mpan2 |  |-  ( G Fn 2o -> G e. Fin ) | 
						
							| 8 | 7 | elexd |  |-  ( G Fn 2o -> G e. _V ) | 
						
							| 9 | 8 | biantrurd |  |-  ( G Fn 2o -> ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) ) | 
						
							| 10 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 11 | 10 | raleqi |  |-  ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> A. k e. { (/) , 1o } ( G ` k ) e. if ( k = (/) , A , B ) ) | 
						
							| 12 |  | 0ex |  |-  (/) e. _V | 
						
							| 13 |  | 1oex |  |-  1o e. _V | 
						
							| 14 |  | fveq2 |  |-  ( k = (/) -> ( G ` k ) = ( G ` (/) ) ) | 
						
							| 15 |  | iftrue |  |-  ( k = (/) -> if ( k = (/) , A , B ) = A ) | 
						
							| 16 | 14 15 | eleq12d |  |-  ( k = (/) -> ( ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G ` (/) ) e. A ) ) | 
						
							| 17 |  | fveq2 |  |-  ( k = 1o -> ( G ` k ) = ( G ` 1o ) ) | 
						
							| 18 |  | 1n0 |  |-  1o =/= (/) | 
						
							| 19 |  | neeq1 |  |-  ( k = 1o -> ( k =/= (/) <-> 1o =/= (/) ) ) | 
						
							| 20 | 18 19 | mpbiri |  |-  ( k = 1o -> k =/= (/) ) | 
						
							| 21 |  | ifnefalse |  |-  ( k =/= (/) -> if ( k = (/) , A , B ) = B ) | 
						
							| 22 | 20 21 | syl |  |-  ( k = 1o -> if ( k = (/) , A , B ) = B ) | 
						
							| 23 | 17 22 | eleq12d |  |-  ( k = 1o -> ( ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G ` 1o ) e. B ) ) | 
						
							| 24 | 12 13 16 23 | ralpr |  |-  ( A. k e. { (/) , 1o } ( G ` k ) e. if ( k = (/) , A , B ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) | 
						
							| 25 | 11 24 | bitri |  |-  ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) | 
						
							| 26 | 9 25 | bitr3di |  |-  ( G Fn 2o -> ( ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) | 
						
							| 27 | 26 | pm5.32i |  |-  ( ( G Fn 2o /\ ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) <-> ( G Fn 2o /\ ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) | 
						
							| 28 |  | 3anass |  |-  ( ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) ) | 
						
							| 29 |  | 3anass |  |-  ( ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) <-> ( G Fn 2o /\ ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) | 
						
							| 30 | 27 28 29 | 3bitr4i |  |-  ( ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) | 
						
							| 31 | 2 30 | bitri |  |-  ( ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) | 
						
							| 32 | 1 31 | bitri |  |-  ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |