Step |
Hyp |
Ref |
Expression |
1 |
|
elixp2 |
|- ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) |
2 |
|
3ancoma |
|- ( ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) |
3 |
|
2onn |
|- 2o e. _om |
4 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
5 |
3 4
|
ax-mp |
|- 2o e. Fin |
6 |
|
fnfi |
|- ( ( G Fn 2o /\ 2o e. Fin ) -> G e. Fin ) |
7 |
5 6
|
mpan2 |
|- ( G Fn 2o -> G e. Fin ) |
8 |
7
|
elexd |
|- ( G Fn 2o -> G e. _V ) |
9 |
8
|
biantrurd |
|- ( G Fn 2o -> ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) ) |
10 |
|
df2o3 |
|- 2o = { (/) , 1o } |
11 |
10
|
raleqi |
|- ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> A. k e. { (/) , 1o } ( G ` k ) e. if ( k = (/) , A , B ) ) |
12 |
|
0ex |
|- (/) e. _V |
13 |
|
1oex |
|- 1o e. _V |
14 |
|
fveq2 |
|- ( k = (/) -> ( G ` k ) = ( G ` (/) ) ) |
15 |
|
iftrue |
|- ( k = (/) -> if ( k = (/) , A , B ) = A ) |
16 |
14 15
|
eleq12d |
|- ( k = (/) -> ( ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G ` (/) ) e. A ) ) |
17 |
|
fveq2 |
|- ( k = 1o -> ( G ` k ) = ( G ` 1o ) ) |
18 |
|
1n0 |
|- 1o =/= (/) |
19 |
|
neeq1 |
|- ( k = 1o -> ( k =/= (/) <-> 1o =/= (/) ) ) |
20 |
18 19
|
mpbiri |
|- ( k = 1o -> k =/= (/) ) |
21 |
|
ifnefalse |
|- ( k =/= (/) -> if ( k = (/) , A , B ) = B ) |
22 |
20 21
|
syl |
|- ( k = 1o -> if ( k = (/) , A , B ) = B ) |
23 |
17 22
|
eleq12d |
|- ( k = 1o -> ( ( G ` k ) e. if ( k = (/) , A , B ) <-> ( G ` 1o ) e. B ) ) |
24 |
12 13 16 23
|
ralpr |
|- ( A. k e. { (/) , 1o } ( G ` k ) e. if ( k = (/) , A , B ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
25 |
11 24
|
bitri |
|- ( A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
26 |
9 25
|
bitr3di |
|- ( G Fn 2o -> ( ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) |
27 |
26
|
pm5.32i |
|- ( ( G Fn 2o /\ ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) <-> ( G Fn 2o /\ ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) |
28 |
|
3anass |
|- ( ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) ) ) |
29 |
|
3anass |
|- ( ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) <-> ( G Fn 2o /\ ( ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) ) |
30 |
27 28 29
|
3bitr4i |
|- ( ( G Fn 2o /\ G e. _V /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
31 |
2 30
|
bitri |
|- ( ( G e. _V /\ G Fn 2o /\ A. k e. 2o ( G ` k ) e. if ( k = (/) , A , B ) ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |
32 |
1 31
|
bitri |
|- ( G e. X_ k e. 2o if ( k = (/) , A , B ) <-> ( G Fn 2o /\ ( G ` (/) ) e. A /\ ( G ` 1o ) e. B ) ) |