| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsff1o.f |  |-  F = ( x e. A , y e. B |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 2 |  | simpl |  |-  ( ( x = X /\ y = Y ) -> x = X ) | 
						
							| 3 | 2 | opeq2d |  |-  ( ( x = X /\ y = Y ) -> <. (/) , x >. = <. (/) , X >. ) | 
						
							| 4 |  | simpr |  |-  ( ( x = X /\ y = Y ) -> y = Y ) | 
						
							| 5 | 4 | opeq2d |  |-  ( ( x = X /\ y = Y ) -> <. 1o , y >. = <. 1o , Y >. ) | 
						
							| 6 | 3 5 | preq12d |  |-  ( ( x = X /\ y = Y ) -> { <. (/) , x >. , <. 1o , y >. } = { <. (/) , X >. , <. 1o , Y >. } ) | 
						
							| 7 |  | prex |  |-  { <. (/) , X >. , <. 1o , Y >. } e. _V | 
						
							| 8 | 6 1 7 | ovmpoa |  |-  ( ( X e. A /\ Y e. B ) -> ( X F Y ) = { <. (/) , X >. , <. 1o , Y >. } ) |