Step |
Hyp |
Ref |
Expression |
1 |
|
xpsgrp.t |
|- T = ( R Xs. S ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
4 |
|
simpl |
|- ( ( R e. Grp /\ S e. Grp ) -> R e. Grp ) |
5 |
|
simpr |
|- ( ( R e. Grp /\ S e. Grp ) -> S e. Grp ) |
6 |
|
eqid |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
7 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
8 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
9 |
1 2 3 4 5 6 7 8
|
xpsval |
|- ( ( R e. Grp /\ S e. Grp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
10 |
6
|
xpsff1o2 |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
11 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
|- ( ( R e. Grp /\ S e. Grp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
12 |
11
|
f1oeq3d |
|- ( ( R e. Grp /\ S e. Grp ) -> ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) <-> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) ) |
13 |
10 12
|
mpbii |
|- ( ( R e. Grp /\ S e. Grp ) -> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
14 |
|
f1ocnv |
|- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
15 |
|
f1of1 |
|- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
16 |
13 14 15
|
3syl |
|- ( ( R e. Grp /\ S e. Grp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
17 |
|
2on |
|- 2o e. On |
18 |
17
|
a1i |
|- ( ( R e. Grp /\ S e. Grp ) -> 2o e. On ) |
19 |
|
fvexd |
|- ( ( R e. Grp /\ S e. Grp ) -> ( Scalar ` R ) e. _V ) |
20 |
|
xpscf |
|- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> Grp <-> ( R e. Grp /\ S e. Grp ) ) |
21 |
20
|
biimpri |
|- ( ( R e. Grp /\ S e. Grp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> Grp ) |
22 |
8 18 19 21
|
prdsgrpd |
|- ( ( R e. Grp /\ S e. Grp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. Grp ) |
23 |
|
eqid |
|- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
24 |
|
eqid |
|- ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
25 |
23 24
|
imasgrpf1 |
|- ( ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) -1-1-> ( ( Base ` R ) X. ( Base ` S ) ) /\ ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. Grp ) -> ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. Grp ) |
26 |
16 22 25
|
syl2anc |
|- ( ( R e. Grp /\ S e. Grp ) -> ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. Grp ) |
27 |
9 26
|
eqeltrd |
|- ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) |