Step |
Hyp |
Ref |
Expression |
1 |
|
xpsinv.t |
|- T = ( R Xs. S ) |
2 |
|
xpsinv.x |
|- X = ( Base ` R ) |
3 |
|
xpsinv.y |
|- Y = ( Base ` S ) |
4 |
|
xpsinv.r |
|- ( ph -> R e. Grp ) |
5 |
|
xpsinv.s |
|- ( ph -> S e. Grp ) |
6 |
|
xpsinv.a |
|- ( ph -> A e. X ) |
7 |
|
xpsinv.b |
|- ( ph -> B e. Y ) |
8 |
|
xpsgrpsub.c |
|- ( ph -> C e. X ) |
9 |
|
xpsgrpsub.d |
|- ( ph -> D e. Y ) |
10 |
|
xpsgrpsub.m |
|- .x. = ( -g ` R ) |
11 |
|
xpsgrpsub.n |
|- .X. = ( -g ` S ) |
12 |
|
xpsgrpsub.o |
|- .- = ( -g ` T ) |
13 |
2 10
|
grpsubcl |
|- ( ( R e. Grp /\ A e. X /\ C e. X ) -> ( A .x. C ) e. X ) |
14 |
4 6 8 13
|
syl3anc |
|- ( ph -> ( A .x. C ) e. X ) |
15 |
3 11
|
grpsubcl |
|- ( ( S e. Grp /\ B e. Y /\ D e. Y ) -> ( B .X. D ) e. Y ) |
16 |
5 7 9 15
|
syl3anc |
|- ( ph -> ( B .X. D ) e. Y ) |
17 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
18 |
2 17 4 14 8
|
grpcld |
|- ( ph -> ( ( A .x. C ) ( +g ` R ) C ) e. X ) |
19 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
20 |
3 19 5 16 9
|
grpcld |
|- ( ph -> ( ( B .X. D ) ( +g ` S ) D ) e. Y ) |
21 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
22 |
1 2 3 4 5 14 16 8 9 18 20 17 19 21
|
xpsadd |
|- ( ph -> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. ( ( A .x. C ) ( +g ` R ) C ) , ( ( B .X. D ) ( +g ` S ) D ) >. ) |
23 |
2 17 10
|
grpnpcan |
|- ( ( R e. Grp /\ A e. X /\ C e. X ) -> ( ( A .x. C ) ( +g ` R ) C ) = A ) |
24 |
4 6 8 23
|
syl3anc |
|- ( ph -> ( ( A .x. C ) ( +g ` R ) C ) = A ) |
25 |
3 19 11
|
grpnpcan |
|- ( ( S e. Grp /\ B e. Y /\ D e. Y ) -> ( ( B .X. D ) ( +g ` S ) D ) = B ) |
26 |
5 7 9 25
|
syl3anc |
|- ( ph -> ( ( B .X. D ) ( +g ` S ) D ) = B ) |
27 |
24 26
|
opeq12d |
|- ( ph -> <. ( ( A .x. C ) ( +g ` R ) C ) , ( ( B .X. D ) ( +g ` S ) D ) >. = <. A , B >. ) |
28 |
22 27
|
eqtrd |
|- ( ph -> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) |
29 |
1
|
xpsgrp |
|- ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) |
30 |
4 5 29
|
syl2anc |
|- ( ph -> T e. Grp ) |
31 |
6 7
|
opelxpd |
|- ( ph -> <. A , B >. e. ( X X. Y ) ) |
32 |
1 2 3 4 5
|
xpsbas |
|- ( ph -> ( X X. Y ) = ( Base ` T ) ) |
33 |
31 32
|
eleqtrd |
|- ( ph -> <. A , B >. e. ( Base ` T ) ) |
34 |
8 9
|
opelxpd |
|- ( ph -> <. C , D >. e. ( X X. Y ) ) |
35 |
34 32
|
eleqtrd |
|- ( ph -> <. C , D >. e. ( Base ` T ) ) |
36 |
14 16
|
opelxpd |
|- ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( X X. Y ) ) |
37 |
36 32
|
eleqtrd |
|- ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( Base ` T ) ) |
38 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
39 |
38 21 12
|
grpsubadd |
|- ( ( T e. Grp /\ ( <. A , B >. e. ( Base ` T ) /\ <. C , D >. e. ( Base ` T ) /\ <. ( A .x. C ) , ( B .X. D ) >. e. ( Base ` T ) ) ) -> ( ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. <-> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) ) |
40 |
30 33 35 37 39
|
syl13anc |
|- ( ph -> ( ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. <-> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) ) |
41 |
28 40
|
mpbird |
|- ( ph -> ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |