| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsinv.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsinv.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsinv.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsinv.r |  |-  ( ph -> R e. Grp ) | 
						
							| 5 |  | xpsinv.s |  |-  ( ph -> S e. Grp ) | 
						
							| 6 |  | xpsinv.a |  |-  ( ph -> A e. X ) | 
						
							| 7 |  | xpsinv.b |  |-  ( ph -> B e. Y ) | 
						
							| 8 |  | xpsgrpsub.c |  |-  ( ph -> C e. X ) | 
						
							| 9 |  | xpsgrpsub.d |  |-  ( ph -> D e. Y ) | 
						
							| 10 |  | xpsgrpsub.m |  |-  .x. = ( -g ` R ) | 
						
							| 11 |  | xpsgrpsub.n |  |-  .X. = ( -g ` S ) | 
						
							| 12 |  | xpsgrpsub.o |  |-  .- = ( -g ` T ) | 
						
							| 13 | 2 10 | grpsubcl |  |-  ( ( R e. Grp /\ A e. X /\ C e. X ) -> ( A .x. C ) e. X ) | 
						
							| 14 | 4 6 8 13 | syl3anc |  |-  ( ph -> ( A .x. C ) e. X ) | 
						
							| 15 | 3 11 | grpsubcl |  |-  ( ( S e. Grp /\ B e. Y /\ D e. Y ) -> ( B .X. D ) e. Y ) | 
						
							| 16 | 5 7 9 15 | syl3anc |  |-  ( ph -> ( B .X. D ) e. Y ) | 
						
							| 17 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 18 | 2 17 4 14 8 | grpcld |  |-  ( ph -> ( ( A .x. C ) ( +g ` R ) C ) e. X ) | 
						
							| 19 |  | eqid |  |-  ( +g ` S ) = ( +g ` S ) | 
						
							| 20 | 3 19 5 16 9 | grpcld |  |-  ( ph -> ( ( B .X. D ) ( +g ` S ) D ) e. Y ) | 
						
							| 21 |  | eqid |  |-  ( +g ` T ) = ( +g ` T ) | 
						
							| 22 | 1 2 3 4 5 14 16 8 9 18 20 17 19 21 | xpsadd |  |-  ( ph -> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. ( ( A .x. C ) ( +g ` R ) C ) , ( ( B .X. D ) ( +g ` S ) D ) >. ) | 
						
							| 23 | 2 17 10 | grpnpcan |  |-  ( ( R e. Grp /\ A e. X /\ C e. X ) -> ( ( A .x. C ) ( +g ` R ) C ) = A ) | 
						
							| 24 | 4 6 8 23 | syl3anc |  |-  ( ph -> ( ( A .x. C ) ( +g ` R ) C ) = A ) | 
						
							| 25 | 3 19 11 | grpnpcan |  |-  ( ( S e. Grp /\ B e. Y /\ D e. Y ) -> ( ( B .X. D ) ( +g ` S ) D ) = B ) | 
						
							| 26 | 5 7 9 25 | syl3anc |  |-  ( ph -> ( ( B .X. D ) ( +g ` S ) D ) = B ) | 
						
							| 27 | 24 26 | opeq12d |  |-  ( ph -> <. ( ( A .x. C ) ( +g ` R ) C ) , ( ( B .X. D ) ( +g ` S ) D ) >. = <. A , B >. ) | 
						
							| 28 | 22 27 | eqtrd |  |-  ( ph -> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) | 
						
							| 29 | 1 | xpsgrp |  |-  ( ( R e. Grp /\ S e. Grp ) -> T e. Grp ) | 
						
							| 30 | 4 5 29 | syl2anc |  |-  ( ph -> T e. Grp ) | 
						
							| 31 | 6 7 | opelxpd |  |-  ( ph -> <. A , B >. e. ( X X. Y ) ) | 
						
							| 32 | 1 2 3 4 5 | xpsbas |  |-  ( ph -> ( X X. Y ) = ( Base ` T ) ) | 
						
							| 33 | 31 32 | eleqtrd |  |-  ( ph -> <. A , B >. e. ( Base ` T ) ) | 
						
							| 34 | 8 9 | opelxpd |  |-  ( ph -> <. C , D >. e. ( X X. Y ) ) | 
						
							| 35 | 34 32 | eleqtrd |  |-  ( ph -> <. C , D >. e. ( Base ` T ) ) | 
						
							| 36 | 14 16 | opelxpd |  |-  ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( X X. Y ) ) | 
						
							| 37 | 36 32 | eleqtrd |  |-  ( ph -> <. ( A .x. C ) , ( B .X. D ) >. e. ( Base ` T ) ) | 
						
							| 38 |  | eqid |  |-  ( Base ` T ) = ( Base ` T ) | 
						
							| 39 | 38 21 12 | grpsubadd |  |-  ( ( T e. Grp /\ ( <. A , B >. e. ( Base ` T ) /\ <. C , D >. e. ( Base ` T ) /\ <. ( A .x. C ) , ( B .X. D ) >. e. ( Base ` T ) ) ) -> ( ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. <-> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) ) | 
						
							| 40 | 30 33 35 37 39 | syl13anc |  |-  ( ph -> ( ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. <-> ( <. ( A .x. C ) , ( B .X. D ) >. ( +g ` T ) <. C , D >. ) = <. A , B >. ) ) | 
						
							| 41 | 28 40 | mpbird |  |-  ( ph -> ( <. A , B >. .- <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |