| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsds.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsds.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsds.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsds.1 |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | xpsds.2 |  |-  ( ph -> S e. W ) | 
						
							| 6 |  | xpsds.p |  |-  P = ( dist ` T ) | 
						
							| 7 |  | xpsds.m |  |-  M = ( ( dist ` R ) |` ( X X. X ) ) | 
						
							| 8 |  | xpsds.n |  |-  N = ( ( dist ` S ) |` ( Y X. Y ) ) | 
						
							| 9 |  | xpsmet.3 |  |-  ( ph -> M e. ( Met ` X ) ) | 
						
							| 10 |  | xpsmet.4 |  |-  ( ph -> N e. ( Met ` Y ) ) | 
						
							| 11 |  | eqid |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 13 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 14 | 1 2 3 4 5 11 12 13 | xpsval |  |-  ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 15 | 1 2 3 4 5 11 12 13 | xpsrnbas |  |-  ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 16 | 11 | xpsff1o2 |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 17 |  | f1ocnv |  |-  ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 19 |  | ovexd |  |-  ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) | 
						
							| 20 |  | eqid |  |-  ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) = ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 21 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 23 |  | eqid |  |-  ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) | 
						
							| 24 |  | eqid |  |-  ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 25 |  | eqid |  |-  ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 26 |  | fvexd |  |-  ( ph -> ( Scalar ` R ) e. _V ) | 
						
							| 27 |  | 2onn |  |-  2o e. _om | 
						
							| 28 |  | nnfi |  |-  ( 2o e. _om -> 2o e. Fin ) | 
						
							| 29 | 27 28 | mp1i |  |-  ( ph -> 2o e. Fin ) | 
						
							| 30 |  | fvexd |  |-  ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) e. _V ) | 
						
							| 31 |  | elpri |  |-  ( k e. { (/) , 1o } -> ( k = (/) \/ k = 1o ) ) | 
						
							| 32 |  | df2o3 |  |-  2o = { (/) , 1o } | 
						
							| 33 | 31 32 | eleq2s |  |-  ( k e. 2o -> ( k = (/) \/ k = 1o ) ) | 
						
							| 34 | 9 | adantr |  |-  ( ( ph /\ k = (/) ) -> M e. ( Met ` X ) ) | 
						
							| 35 |  | fveq2 |  |-  ( k = (/) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) ) | 
						
							| 36 |  | fvpr0o |  |-  ( R e. V -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) | 
						
							| 37 | 4 36 | syl |  |-  ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` (/) ) = R ) | 
						
							| 38 | 35 37 | sylan9eqr |  |-  ( ( ph /\ k = (/) ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = R ) | 
						
							| 39 | 38 | fveq2d |  |-  ( ( ph /\ k = (/) ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` R ) ) | 
						
							| 40 | 38 | fveq2d |  |-  ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` R ) ) | 
						
							| 41 | 40 2 | eqtr4di |  |-  ( ( ph /\ k = (/) ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = X ) | 
						
							| 42 | 41 | sqxpeqd |  |-  ( ( ph /\ k = (/) ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( X X. X ) ) | 
						
							| 43 | 39 42 | reseq12d |  |-  ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` R ) |` ( X X. X ) ) ) | 
						
							| 44 | 43 7 | eqtr4di |  |-  ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = M ) | 
						
							| 45 | 41 | fveq2d |  |-  ( ( ph /\ k = (/) ) -> ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Met ` X ) ) | 
						
							| 46 | 34 44 45 | 3eltr4d |  |-  ( ( ph /\ k = (/) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 47 | 10 | adantr |  |-  ( ( ph /\ k = 1o ) -> N e. ( Met ` Y ) ) | 
						
							| 48 |  | fveq2 |  |-  ( k = 1o -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) ) | 
						
							| 49 |  | fvpr1o |  |-  ( S e. W -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) | 
						
							| 50 | 5 49 | syl |  |-  ( ph -> ( { <. (/) , R >. , <. 1o , S >. } ` 1o ) = S ) | 
						
							| 51 | 48 50 | sylan9eqr |  |-  ( ( ph /\ k = 1o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = S ) | 
						
							| 52 | 51 | fveq2d |  |-  ( ( ph /\ k = 1o ) -> ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( dist ` S ) ) | 
						
							| 53 | 51 | fveq2d |  |-  ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` S ) ) | 
						
							| 54 | 53 3 | eqtr4di |  |-  ( ( ph /\ k = 1o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = Y ) | 
						
							| 55 | 54 | sqxpeqd |  |-  ( ( ph /\ k = 1o ) -> ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Y X. Y ) ) | 
						
							| 56 | 52 55 | reseq12d |  |-  ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = ( ( dist ` S ) |` ( Y X. Y ) ) ) | 
						
							| 57 | 56 8 | eqtr4di |  |-  ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) = N ) | 
						
							| 58 | 54 | fveq2d |  |-  ( ( ph /\ k = 1o ) -> ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) = ( Met ` Y ) ) | 
						
							| 59 | 47 57 58 | 3eltr4d |  |-  ( ( ph /\ k = 1o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 60 | 46 59 | jaodan |  |-  ( ( ph /\ ( k = (/) \/ k = 1o ) ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 61 | 33 60 | sylan2 |  |-  ( ( ph /\ k e. 2o ) -> ( ( dist ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) |` ( ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) X. ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 62 | 21 22 23 24 25 26 29 30 61 | prdsmet |  |-  ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) e. ( Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) | 
						
							| 63 |  | fnpr2o |  |-  ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) | 
						
							| 64 | 4 5 63 | syl2anc |  |-  ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) | 
						
							| 65 |  | dffn5 |  |-  ( { <. (/) , R >. , <. 1o , S >. } Fn 2o <-> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) | 
						
							| 66 | 64 65 | sylib |  |-  ( ph -> { <. (/) , R >. , <. 1o , S >. } = ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) | 
						
							| 67 | 66 | oveq2d |  |-  ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) | 
						
							| 68 | 67 | fveq2d |  |-  ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( dist ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) | 
						
							| 69 | 67 | fveq2d |  |-  ( ph -> ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) | 
						
							| 70 | 15 69 | eqtrd |  |-  ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) | 
						
							| 71 | 70 | fveq2d |  |-  ( ph -> ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) = ( Met ` ( Base ` ( ( Scalar ` R ) Xs_ ( k e. 2o |-> ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) ) ) ) | 
						
							| 72 | 62 68 71 | 3eltr4d |  |-  ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 73 |  | ssid |  |-  ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 74 |  | metres2 |  |-  ( ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 75 | 72 73 74 | sylancl |  |-  ( ph -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 76 | 14 15 18 19 20 6 75 | imasf1omet |  |-  ( ph -> P e. ( Met ` ( X X. Y ) ) ) |