| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpsmnd0.t |
|- T = ( R Xs. S ) |
| 2 |
|
eqid |
|- ( Base ` T ) = ( Base ` T ) |
| 3 |
|
eqid |
|- ( 0g ` T ) = ( 0g ` T ) |
| 4 |
|
eqid |
|- ( +g ` T ) = ( +g ` T ) |
| 5 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 6 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 7 |
5 6
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. ( Base ` R ) ) |
| 8 |
7
|
adantr |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 9 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 10 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 11 |
9 10
|
mndidcl |
|- ( S e. Mnd -> ( 0g ` S ) e. ( Base ` S ) ) |
| 12 |
11
|
adantl |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 13 |
8 12
|
opelxpd |
|- ( ( R e. Mnd /\ S e. Mnd ) -> <. ( 0g ` R ) , ( 0g ` S ) >. e. ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 14 |
|
simpl |
|- ( ( R e. Mnd /\ S e. Mnd ) -> R e. Mnd ) |
| 15 |
|
simpr |
|- ( ( R e. Mnd /\ S e. Mnd ) -> S e. Mnd ) |
| 16 |
1 5 9 14 15
|
xpsbas |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( ( Base ` R ) X. ( Base ` S ) ) = ( Base ` T ) ) |
| 17 |
13 16
|
eleqtrd |
|- ( ( R e. Mnd /\ S e. Mnd ) -> <. ( 0g ` R ) , ( 0g ` S ) >. e. ( Base ` T ) ) |
| 18 |
16
|
eleq2d |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( ( Base ` R ) X. ( Base ` S ) ) <-> x e. ( Base ` T ) ) ) |
| 19 |
|
elxp2 |
|- ( x e. ( ( Base ` R ) X. ( Base ` S ) ) <-> E. a e. ( Base ` R ) E. b e. ( Base ` S ) x = <. a , b >. ) |
| 20 |
14
|
adantr |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> R e. Mnd ) |
| 21 |
15
|
adantr |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> S e. Mnd ) |
| 22 |
8
|
adantr |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( 0g ` R ) e. ( Base ` R ) ) |
| 23 |
12
|
adantr |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( 0g ` S ) e. ( Base ` S ) ) |
| 24 |
|
simpl |
|- ( ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) -> a e. ( Base ` R ) ) |
| 25 |
24
|
adantl |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> a e. ( Base ` R ) ) |
| 26 |
|
simpr |
|- ( ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) -> b e. ( Base ` S ) ) |
| 27 |
26
|
adantl |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> b e. ( Base ` S ) ) |
| 28 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 29 |
5 28
|
mndcl |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. ( Base ` R ) /\ a e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) e. ( Base ` R ) ) |
| 30 |
20 22 25 29
|
syl3anc |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) e. ( Base ` R ) ) |
| 31 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 32 |
9 31
|
mndcl |
|- ( ( S e. Mnd /\ ( 0g ` S ) e. ( Base ` S ) /\ b e. ( Base ` S ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) e. ( Base ` S ) ) |
| 33 |
21 23 27 32
|
syl3anc |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) e. ( Base ` S ) ) |
| 34 |
1 5 9 20 21 22 23 25 27 30 33 28 31 4
|
xpsadd |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) = <. ( ( 0g ` R ) ( +g ` R ) a ) , ( ( 0g ` S ) ( +g ` S ) b ) >. ) |
| 35 |
5 28 6
|
mndlid |
|- ( ( R e. Mnd /\ a e. ( Base ` R ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) = a ) |
| 36 |
14 24 35
|
syl2an |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` R ) ( +g ` R ) a ) = a ) |
| 37 |
9 31 10
|
mndlid |
|- ( ( S e. Mnd /\ b e. ( Base ` S ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) = b ) |
| 38 |
15 26 37
|
syl2an |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( ( 0g ` S ) ( +g ` S ) b ) = b ) |
| 39 |
36 38
|
opeq12d |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> <. ( ( 0g ` R ) ( +g ` R ) a ) , ( ( 0g ` S ) ( +g ` S ) b ) >. = <. a , b >. ) |
| 40 |
34 39
|
eqtrd |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) = <. a , b >. ) |
| 41 |
|
oveq2 |
|- ( x = <. a , b >. -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) ) |
| 42 |
|
id |
|- ( x = <. a , b >. -> x = <. a , b >. ) |
| 43 |
41 42
|
eqeq12d |
|- ( x = <. a , b >. -> ( ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x <-> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) <. a , b >. ) = <. a , b >. ) ) |
| 44 |
40 43
|
syl5ibrcom |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( x = <. a , b >. -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 45 |
44
|
rexlimdvva |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( E. a e. ( Base ` R ) E. b e. ( Base ` S ) x = <. a , b >. -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 46 |
19 45
|
biimtrid |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( ( Base ` R ) X. ( Base ` S ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 47 |
18 46
|
sylbird |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( Base ` T ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) ) |
| 48 |
47
|
imp |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ x e. ( Base ` T ) ) -> ( <. ( 0g ` R ) , ( 0g ` S ) >. ( +g ` T ) x ) = x ) |
| 49 |
5 28
|
mndcl |
|- ( ( R e. Mnd /\ a e. ( Base ` R ) /\ ( 0g ` R ) e. ( Base ` R ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) e. ( Base ` R ) ) |
| 50 |
20 25 22 49
|
syl3anc |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) e. ( Base ` R ) ) |
| 51 |
9 31
|
mndcl |
|- ( ( S e. Mnd /\ b e. ( Base ` S ) /\ ( 0g ` S ) e. ( Base ` S ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) e. ( Base ` S ) ) |
| 52 |
21 27 23 51
|
syl3anc |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) e. ( Base ` S ) ) |
| 53 |
1 5 9 20 21 25 27 22 23 50 52 28 31 4
|
xpsadd |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = <. ( a ( +g ` R ) ( 0g ` R ) ) , ( b ( +g ` S ) ( 0g ` S ) ) >. ) |
| 54 |
5 28 6
|
mndrid |
|- ( ( R e. Mnd /\ a e. ( Base ` R ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) = a ) |
| 55 |
14 24 54
|
syl2an |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( a ( +g ` R ) ( 0g ` R ) ) = a ) |
| 56 |
9 31 10
|
mndrid |
|- ( ( S e. Mnd /\ b e. ( Base ` S ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) = b ) |
| 57 |
15 26 56
|
syl2an |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( b ( +g ` S ) ( 0g ` S ) ) = b ) |
| 58 |
55 57
|
opeq12d |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> <. ( a ( +g ` R ) ( 0g ` R ) ) , ( b ( +g ` S ) ( 0g ` S ) ) >. = <. a , b >. ) |
| 59 |
53 58
|
eqtrd |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = <. a , b >. ) |
| 60 |
|
oveq1 |
|- ( x = <. a , b >. -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) ) |
| 61 |
60 42
|
eqeq12d |
|- ( x = <. a , b >. -> ( ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x <-> ( <. a , b >. ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = <. a , b >. ) ) |
| 62 |
59 61
|
syl5ibrcom |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ ( a e. ( Base ` R ) /\ b e. ( Base ` S ) ) ) -> ( x = <. a , b >. -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 63 |
62
|
rexlimdvva |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( E. a e. ( Base ` R ) E. b e. ( Base ` S ) x = <. a , b >. -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 64 |
19 63
|
biimtrid |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( ( Base ` R ) X. ( Base ` S ) ) -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 65 |
18 64
|
sylbird |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( x e. ( Base ` T ) -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) ) |
| 66 |
65
|
imp |
|- ( ( ( R e. Mnd /\ S e. Mnd ) /\ x e. ( Base ` T ) ) -> ( x ( +g ` T ) <. ( 0g ` R ) , ( 0g ` S ) >. ) = x ) |
| 67 |
2 3 4 17 48 66
|
ismgmid2 |
|- ( ( R e. Mnd /\ S e. Mnd ) -> <. ( 0g ` R ) , ( 0g ` S ) >. = ( 0g ` T ) ) |
| 68 |
67
|
eqcomd |
|- ( ( R e. Mnd /\ S e. Mnd ) -> ( 0g ` T ) = <. ( 0g ` R ) , ( 0g ` S ) >. ) |