| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsms.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 3 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 4 |  | simpl |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> R e. MetSp ) | 
						
							| 5 |  | simpr |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> S e. MetSp ) | 
						
							| 6 |  | eqid |  |-  ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 7 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 8 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | xpsval |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 | xpsrnbas |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 11 | 6 | xpsff1o2 |  |-  ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 12 |  | f1ocnv |  |-  ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) | 
						
							| 13 | 11 12 | mp1i |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) | 
						
							| 14 |  | fvexd |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> ( Scalar ` R ) e. _V ) | 
						
							| 15 |  | 2onn |  |-  2o e. _om | 
						
							| 16 |  | nnfi |  |-  ( 2o e. _om -> 2o e. Fin ) | 
						
							| 17 | 15 16 | mp1i |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> 2o e. Fin ) | 
						
							| 18 |  | xpscf |  |-  ( { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp <-> ( R e. MetSp /\ S e. MetSp ) ) | 
						
							| 19 | 18 | biimpri |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp ) | 
						
							| 20 | 8 | prdsms |  |-  ( ( ( Scalar ` R ) e. _V /\ 2o e. Fin /\ { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. MetSp ) | 
						
							| 21 | 14 17 19 20 | syl3anc |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. MetSp ) | 
						
							| 22 | 9 10 13 21 | imasf1oms |  |-  ( ( R e. MetSp /\ S e. MetSp ) -> T e. MetSp ) |