Step |
Hyp |
Ref |
Expression |
1 |
|
xpsms.t |
|- T = ( R Xs. S ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
4 |
|
simpl |
|- ( ( R e. MetSp /\ S e. MetSp ) -> R e. MetSp ) |
5 |
|
simpr |
|- ( ( R e. MetSp /\ S e. MetSp ) -> S e. MetSp ) |
6 |
|
eqid |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
7 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
8 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
9 |
1 2 3 4 5 6 7 8
|
xpsval |
|- ( ( R e. MetSp /\ S e. MetSp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
10 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
|- ( ( R e. MetSp /\ S e. MetSp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
11 |
6
|
xpsff1o2 |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
12 |
|
f1ocnv |
|- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
13 |
11 12
|
mp1i |
|- ( ( R e. MetSp /\ S e. MetSp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
14 |
|
fvexd |
|- ( ( R e. MetSp /\ S e. MetSp ) -> ( Scalar ` R ) e. _V ) |
15 |
|
2onn |
|- 2o e. _om |
16 |
|
nnfi |
|- ( 2o e. _om -> 2o e. Fin ) |
17 |
15 16
|
mp1i |
|- ( ( R e. MetSp /\ S e. MetSp ) -> 2o e. Fin ) |
18 |
|
xpscf |
|- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp <-> ( R e. MetSp /\ S e. MetSp ) ) |
19 |
18
|
biimpri |
|- ( ( R e. MetSp /\ S e. MetSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp ) |
20 |
8
|
prdsms |
|- ( ( ( Scalar ` R ) e. _V /\ 2o e. Fin /\ { <. (/) , R >. , <. 1o , S >. } : 2o --> MetSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. MetSp ) |
21 |
14 17 19 20
|
syl3anc |
|- ( ( R e. MetSp /\ S e. MetSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. MetSp ) |
22 |
9 10 13 21
|
imasf1oms |
|- ( ( R e. MetSp /\ S e. MetSp ) -> T e. MetSp ) |