| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsval.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsval.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsval.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsval.1 |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | xpsval.2 |  |-  ( ph -> S e. W ) | 
						
							| 6 |  | xpsadd.3 |  |-  ( ph -> A e. X ) | 
						
							| 7 |  | xpsadd.4 |  |-  ( ph -> B e. Y ) | 
						
							| 8 |  | xpsadd.5 |  |-  ( ph -> C e. X ) | 
						
							| 9 |  | xpsadd.6 |  |-  ( ph -> D e. Y ) | 
						
							| 10 |  | xpsadd.7 |  |-  ( ph -> ( A .x. C ) e. X ) | 
						
							| 11 |  | xpsadd.8 |  |-  ( ph -> ( B .X. D ) e. Y ) | 
						
							| 12 |  | xpsmul.m |  |-  .x. = ( .r ` R ) | 
						
							| 13 |  | xpsmul.n |  |-  .X. = ( .r ` S ) | 
						
							| 14 |  | xpsmul.p |  |-  .xb = ( .r ` T ) | 
						
							| 15 |  | eqid |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 16 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 17 | 15 | xpsff1o2 |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 18 |  | f1ocnv |  |-  ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 19 | 17 18 | mp1i |  |-  ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 20 |  | f1ofo |  |-  ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) | 
						
							| 21 | 19 20 | syl |  |-  ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( X X. Y ) ) | 
						
							| 22 | 19 | f1ocpbl |  |-  ( ( ph /\ ( a e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ b e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ( c e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ d e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) -> ( ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` a ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` c ) /\ ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` b ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` d ) ) -> ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( a ( .r ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) b ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( c ( .r ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) d ) ) ) ) | 
						
							| 23 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 24 | 1 2 3 4 5 15 23 16 | xpsval |  |-  ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 25 | 1 2 3 4 5 15 23 16 | xpsrnbas |  |-  ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 26 |  | ovexd |  |-  ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) | 
						
							| 27 |  | eqid |  |-  ( .r ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( .r ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) | 
						
							| 28 | 21 22 24 25 26 27 14 | imasmulval |  |-  ( ( ph /\ { <. (/) , A >. , <. 1o , B >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) /\ { <. (/) , C >. , <. 1o , D >. } e. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , A >. , <. 1o , B >. } ) .xb ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` { <. (/) , C >. , <. 1o , D >. } ) ) = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ` ( { <. (/) , A >. , <. 1o , B >. } ( .r ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) | 
						
							| 30 |  | fvexd |  |-  ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> ( Scalar ` R ) e. _V ) | 
						
							| 31 |  | 2on |  |-  2o e. On | 
						
							| 32 | 31 | a1i |  |-  ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> 2o e. On ) | 
						
							| 33 |  | simp1 |  |-  ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) | 
						
							| 34 |  | simp2 |  |-  ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 35 |  | simp3 |  |-  ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 36 | 16 29 30 32 33 34 35 27 | prdsmulrval |  |-  ( ( { <. (/) , R >. , <. 1o , S >. } Fn 2o /\ { <. (/) , A >. , <. 1o , B >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) /\ { <. (/) , C >. , <. 1o , D >. } e. ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) -> ( { <. (/) , A >. , <. 1o , B >. } ( .r ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) { <. (/) , C >. , <. 1o , D >. } ) = ( k e. 2o |-> ( ( { <. (/) , A >. , <. 1o , B >. } ` k ) ( .r ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ( { <. (/) , C >. , <. 1o , D >. } ` k ) ) ) ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 28 36 | xpsaddlem |  |-  ( ph -> ( <. A , B >. .xb <. C , D >. ) = <. ( A .x. C ) , ( B .X. D ) >. ) |