Metamath Proof Explorer


Theorem xpsng

Description: The Cartesian product of two singletons is the singleton consisting in the associated ordered pair. (Contributed by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion xpsng
|- ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } )

Proof

Step Hyp Ref Expression
1 fconstg
 |-  ( B e. W -> ( { A } X. { B } ) : { A } --> { B } )
2 1 adantl
 |-  ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) : { A } --> { B } )
3 fsng
 |-  ( ( A e. V /\ B e. W ) -> ( ( { A } X. { B } ) : { A } --> { B } <-> ( { A } X. { B } ) = { <. A , B >. } ) )
4 2 3 mpbid
 |-  ( ( A e. V /\ B e. W ) -> ( { A } X. { B } ) = { <. A , B >. } )