| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpsringd.y |
|- Y = ( S Xs. R ) |
| 2 |
|
xpsringd.s |
|- ( ph -> S e. Ring ) |
| 3 |
|
xpsringd.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
eqid |
|- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
| 5 |
|
eqid |
|- ( Base ` Y ) = ( Base ` Y ) |
| 6 |
4 5
|
mgpbas |
|- ( Base ` Y ) = ( Base ` ( mulGrp ` Y ) ) |
| 7 |
|
eqid |
|- ( 1r ` Y ) = ( 1r ` Y ) |
| 8 |
4 7
|
ringidval |
|- ( 1r ` Y ) = ( 0g ` ( mulGrp ` Y ) ) |
| 9 |
|
eqid |
|- ( .r ` Y ) = ( .r ` Y ) |
| 10 |
4 9
|
mgpplusg |
|- ( .r ` Y ) = ( +g ` ( mulGrp ` Y ) ) |
| 11 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 12 |
|
eqid |
|- ( 1r ` S ) = ( 1r ` S ) |
| 13 |
11 12
|
ringidcl |
|- ( S e. Ring -> ( 1r ` S ) e. ( Base ` S ) ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( 1r ` S ) e. ( Base ` S ) ) |
| 15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 16 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 17 |
15 16
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 18 |
3 17
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 19 |
14 18
|
opelxpd |
|- ( ph -> <. ( 1r ` S ) , ( 1r ` R ) >. e. ( ( Base ` S ) X. ( Base ` R ) ) ) |
| 20 |
1 11 15 2 3
|
xpsbas |
|- ( ph -> ( ( Base ` S ) X. ( Base ` R ) ) = ( Base ` Y ) ) |
| 21 |
19 20
|
eleqtrd |
|- ( ph -> <. ( 1r ` S ) , ( 1r ` R ) >. e. ( Base ` Y ) ) |
| 22 |
20
|
eleq2d |
|- ( ph -> ( x e. ( ( Base ` S ) X. ( Base ` R ) ) <-> x e. ( Base ` Y ) ) ) |
| 23 |
|
elxp2 |
|- ( x e. ( ( Base ` S ) X. ( Base ` R ) ) <-> E. a e. ( Base ` S ) E. b e. ( Base ` R ) x = <. a , b >. ) |
| 24 |
2
|
adantr |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> S e. Ring ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> R e. Ring ) |
| 26 |
14
|
adantr |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( 1r ` S ) e. ( Base ` S ) ) |
| 27 |
18
|
adantr |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 28 |
|
simprl |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> a e. ( Base ` S ) ) |
| 29 |
|
simprr |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> b e. ( Base ` R ) ) |
| 30 |
|
eqid |
|- ( .r ` S ) = ( .r ` S ) |
| 31 |
11 30 24 26 28
|
ringcld |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` S ) ( .r ` S ) a ) e. ( Base ` S ) ) |
| 32 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 33 |
15 32 25 27 29
|
ringcld |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` R ) ( .r ` R ) b ) e. ( Base ` R ) ) |
| 34 |
1 11 15 24 25 26 27 28 29 31 33 30 32 9
|
xpsmul |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) = <. ( ( 1r ` S ) ( .r ` S ) a ) , ( ( 1r ` R ) ( .r ` R ) b ) >. ) |
| 35 |
|
simpl |
|- ( ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) -> a e. ( Base ` S ) ) |
| 36 |
11 30 12
|
ringlidm |
|- ( ( S e. Ring /\ a e. ( Base ` S ) ) -> ( ( 1r ` S ) ( .r ` S ) a ) = a ) |
| 37 |
2 35 36
|
syl2an |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` S ) ( .r ` S ) a ) = a ) |
| 38 |
|
simpr |
|- ( ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) -> b e. ( Base ` R ) ) |
| 39 |
15 32 16
|
ringlidm |
|- ( ( R e. Ring /\ b e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) b ) = b ) |
| 40 |
3 38 39
|
syl2an |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( ( 1r ` R ) ( .r ` R ) b ) = b ) |
| 41 |
37 40
|
opeq12d |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> <. ( ( 1r ` S ) ( .r ` S ) a ) , ( ( 1r ` R ) ( .r ` R ) b ) >. = <. a , b >. ) |
| 42 |
34 41
|
eqtrd |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) = <. a , b >. ) |
| 43 |
|
oveq2 |
|- ( x = <. a , b >. -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) ) |
| 44 |
|
id |
|- ( x = <. a , b >. -> x = <. a , b >. ) |
| 45 |
43 44
|
eqeq12d |
|- ( x = <. a , b >. -> ( ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x <-> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) <. a , b >. ) = <. a , b >. ) ) |
| 46 |
42 45
|
syl5ibrcom |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( x = <. a , b >. -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 47 |
46
|
rexlimdvva |
|- ( ph -> ( E. a e. ( Base ` S ) E. b e. ( Base ` R ) x = <. a , b >. -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 48 |
23 47
|
biimtrid |
|- ( ph -> ( x e. ( ( Base ` S ) X. ( Base ` R ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 49 |
22 48
|
sylbird |
|- ( ph -> ( x e. ( Base ` Y ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) ) |
| 50 |
49
|
imp |
|- ( ( ph /\ x e. ( Base ` Y ) ) -> ( <. ( 1r ` S ) , ( 1r ` R ) >. ( .r ` Y ) x ) = x ) |
| 51 |
11 30 24 28 26
|
ringcld |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( a ( .r ` S ) ( 1r ` S ) ) e. ( Base ` S ) ) |
| 52 |
15 32 25 29 27
|
ringcld |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( b ( .r ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
| 53 |
1 11 15 24 25 28 29 26 27 51 52 30 32 9
|
xpsmul |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = <. ( a ( .r ` S ) ( 1r ` S ) ) , ( b ( .r ` R ) ( 1r ` R ) ) >. ) |
| 54 |
11 30 12
|
ringridm |
|- ( ( S e. Ring /\ a e. ( Base ` S ) ) -> ( a ( .r ` S ) ( 1r ` S ) ) = a ) |
| 55 |
2 35 54
|
syl2an |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( a ( .r ` S ) ( 1r ` S ) ) = a ) |
| 56 |
15 32 16
|
ringridm |
|- ( ( R e. Ring /\ b e. ( Base ` R ) ) -> ( b ( .r ` R ) ( 1r ` R ) ) = b ) |
| 57 |
3 38 56
|
syl2an |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( b ( .r ` R ) ( 1r ` R ) ) = b ) |
| 58 |
55 57
|
opeq12d |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> <. ( a ( .r ` S ) ( 1r ` S ) ) , ( b ( .r ` R ) ( 1r ` R ) ) >. = <. a , b >. ) |
| 59 |
53 58
|
eqtrd |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = <. a , b >. ) |
| 60 |
|
oveq1 |
|- ( x = <. a , b >. -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) ) |
| 61 |
60 44
|
eqeq12d |
|- ( x = <. a , b >. -> ( ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x <-> ( <. a , b >. ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = <. a , b >. ) ) |
| 62 |
59 61
|
syl5ibrcom |
|- ( ( ph /\ ( a e. ( Base ` S ) /\ b e. ( Base ` R ) ) ) -> ( x = <. a , b >. -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 63 |
62
|
rexlimdvva |
|- ( ph -> ( E. a e. ( Base ` S ) E. b e. ( Base ` R ) x = <. a , b >. -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 64 |
23 63
|
biimtrid |
|- ( ph -> ( x e. ( ( Base ` S ) X. ( Base ` R ) ) -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 65 |
22 64
|
sylbird |
|- ( ph -> ( x e. ( Base ` Y ) -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) ) |
| 66 |
65
|
imp |
|- ( ( ph /\ x e. ( Base ` Y ) ) -> ( x ( .r ` Y ) <. ( 1r ` S ) , ( 1r ` R ) >. ) = x ) |
| 67 |
6 8 10 21 50 66
|
ismgmid2 |
|- ( ph -> <. ( 1r ` S ) , ( 1r ` R ) >. = ( 1r ` Y ) ) |
| 68 |
67
|
eqcomd |
|- ( ph -> ( 1r ` Y ) = <. ( 1r ` S ) , ( 1r ` R ) >. ) |