Step |
Hyp |
Ref |
Expression |
1 |
|
xpsval.t |
|- T = ( R Xs. S ) |
2 |
|
xpsval.x |
|- X = ( Base ` R ) |
3 |
|
xpsval.y |
|- Y = ( Base ` S ) |
4 |
|
xpsval.1 |
|- ( ph -> R e. V ) |
5 |
|
xpsval.2 |
|- ( ph -> S e. W ) |
6 |
|
xpsval.f |
|- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
7 |
|
xpsval.k |
|- G = ( Scalar ` R ) |
8 |
|
xpsval.u |
|- U = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
9 |
|
eqid |
|- ( Base ` U ) = ( Base ` U ) |
10 |
7
|
fvexi |
|- G e. _V |
11 |
10
|
a1i |
|- ( ph -> G e. _V ) |
12 |
|
2on |
|- 2o e. On |
13 |
12
|
a1i |
|- ( ph -> 2o e. On ) |
14 |
|
fnpr2o |
|- ( ( R e. V /\ S e. W ) -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
15 |
4 5 14
|
syl2anc |
|- ( ph -> { <. (/) , R >. , <. 1o , S >. } Fn 2o ) |
16 |
8 9 11 13 15
|
prdsbas2 |
|- ( ph -> ( Base ` U ) = X_ k e. 2o ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) ) |
17 |
|
fvprif |
|- ( ( R e. V /\ S e. W /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) |
18 |
17
|
3expia |
|- ( ( R e. V /\ S e. W ) -> ( k e. 2o -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) ) |
19 |
4 5 18
|
syl2anc |
|- ( ph -> ( k e. 2o -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) ) |
20 |
19
|
imp |
|- ( ( ph /\ k e. 2o ) -> ( { <. (/) , R >. , <. 1o , S >. } ` k ) = if ( k = (/) , R , S ) ) |
21 |
20
|
fveq2d |
|- ( ( ph /\ k e. 2o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ( Base ` if ( k = (/) , R , S ) ) ) |
22 |
|
ifeq12 |
|- ( ( X = ( Base ` R ) /\ Y = ( Base ` S ) ) -> if ( k = (/) , X , Y ) = if ( k = (/) , ( Base ` R ) , ( Base ` S ) ) ) |
23 |
2 3 22
|
mp2an |
|- if ( k = (/) , X , Y ) = if ( k = (/) , ( Base ` R ) , ( Base ` S ) ) |
24 |
|
fvif |
|- ( Base ` if ( k = (/) , R , S ) ) = if ( k = (/) , ( Base ` R ) , ( Base ` S ) ) |
25 |
23 24
|
eqtr4i |
|- if ( k = (/) , X , Y ) = ( Base ` if ( k = (/) , R , S ) ) |
26 |
21 25
|
eqtr4di |
|- ( ( ph /\ k e. 2o ) -> ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = if ( k = (/) , X , Y ) ) |
27 |
26
|
ixpeq2dva |
|- ( ph -> X_ k e. 2o ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = X_ k e. 2o if ( k = (/) , X , Y ) ) |
28 |
6
|
xpsfrn |
|- ran F = X_ k e. 2o if ( k = (/) , X , Y ) |
29 |
27 28
|
eqtr4di |
|- ( ph -> X_ k e. 2o ( Base ` ( { <. (/) , R >. , <. 1o , S >. } ` k ) ) = ran F ) |
30 |
16 29
|
eqtr2d |
|- ( ph -> ran F = ( Base ` U ) ) |