| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpssca.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpssca.g |  |-  G = ( Scalar ` R ) | 
						
							| 3 |  | xpssca.1 |  |-  ( ph -> R e. V ) | 
						
							| 4 |  | xpssca.2 |  |-  ( ph -> S e. W ) | 
						
							| 5 |  | eqid |  |-  ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 6 | 2 | fvexi |  |-  G e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ph -> G e. _V ) | 
						
							| 8 |  | prex |  |-  { <. (/) , R >. , <. 1o , S >. } e. _V | 
						
							| 9 | 8 | a1i |  |-  ( ph -> { <. (/) , R >. , <. 1o , S >. } e. _V ) | 
						
							| 10 | 5 7 9 | prdssca |  |-  ( ph -> G = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 13 |  | eqid |  |-  ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 14 | 1 11 12 3 4 13 2 5 | xpsval |  |-  ( ph -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 15 | 1 11 12 3 4 13 2 5 | xpsrnbas |  |-  ( ph -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 16 | 13 | xpsff1o2 |  |-  ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 17 |  | f1ocnv |  |-  ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( ph -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) | 
						
							| 19 |  | f1ofo |  |-  ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) | 
						
							| 21 |  | ovexd |  |-  ( ph -> ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) | 
						
							| 22 |  | eqid |  |-  ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) | 
						
							| 23 | 14 15 20 21 22 | imassca |  |-  ( ph -> ( Scalar ` ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) = ( Scalar ` T ) ) | 
						
							| 24 | 10 23 | eqtrd |  |-  ( ph -> G = ( Scalar ` T ) ) |