| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
|- ( ( A X. B ) |` C ) = ( ( A X. B ) i^i ( C X. _V ) ) |
| 2 |
|
inxp |
|- ( ( A X. B ) i^i ( C X. _V ) ) = ( ( A i^i C ) X. ( B i^i _V ) ) |
| 3 |
|
inv1 |
|- ( B i^i _V ) = B |
| 4 |
3
|
xpeq2i |
|- ( ( A i^i C ) X. ( B i^i _V ) ) = ( ( A i^i C ) X. B ) |
| 5 |
1 2 4
|
3eqtri |
|- ( ( A X. B ) |` C ) = ( ( A i^i C ) X. B ) |
| 6 |
|
sseqin2 |
|- ( C C_ A <-> ( A i^i C ) = C ) |
| 7 |
6
|
biimpi |
|- ( C C_ A -> ( A i^i C ) = C ) |
| 8 |
7
|
xpeq1d |
|- ( C C_ A -> ( ( A i^i C ) X. B ) = ( C X. B ) ) |
| 9 |
5 8
|
eqtrid |
|- ( C C_ A -> ( ( A X. B ) |` C ) = ( C X. B ) ) |