Metamath Proof Explorer


Theorem xpssres

Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion xpssres
|- ( C C_ A -> ( ( A X. B ) |` C ) = ( C X. B ) )

Proof

Step Hyp Ref Expression
1 df-res
 |-  ( ( A X. B ) |` C ) = ( ( A X. B ) i^i ( C X. _V ) )
2 inxp
 |-  ( ( A X. B ) i^i ( C X. _V ) ) = ( ( A i^i C ) X. ( B i^i _V ) )
3 inv1
 |-  ( B i^i _V ) = B
4 3 xpeq2i
 |-  ( ( A i^i C ) X. ( B i^i _V ) ) = ( ( A i^i C ) X. B )
5 1 2 4 3eqtri
 |-  ( ( A X. B ) |` C ) = ( ( A i^i C ) X. B )
6 sseqin2
 |-  ( C C_ A <-> ( A i^i C ) = C )
7 6 biimpi
 |-  ( C C_ A -> ( A i^i C ) = C )
8 7 xpeq1d
 |-  ( C C_ A -> ( ( A i^i C ) X. B ) = ( C X. B ) )
9 5 8 eqtrid
 |-  ( C C_ A -> ( ( A X. B ) |` C ) = ( C X. B ) )