Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xpstps.t | |- T = ( R Xs. S ) |
|
xpstopn.j | |- J = ( TopOpen ` R ) |
||
xpstopn.k | |- K = ( TopOpen ` S ) |
||
xpstopn.o | |- O = ( TopOpen ` T ) |
||
Assertion | xpstopn | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpstps.t | |- T = ( R Xs. S ) |
|
2 | xpstopn.j | |- J = ( TopOpen ` R ) |
|
3 | xpstopn.k | |- K = ( TopOpen ` S ) |
|
4 | xpstopn.o | |- O = ( TopOpen ` T ) |
|
5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
6 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
7 | eqid | |- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
|
8 | 1 2 3 4 5 6 7 | xpstopnlem2 | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) ) |