Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xpstps.t | |- T = ( R Xs. S ) | |
| xpstopn.j | |- J = ( TopOpen ` R ) | ||
| xpstopn.k | |- K = ( TopOpen ` S ) | ||
| xpstopn.o | |- O = ( TopOpen ` T ) | ||
| Assertion | xpstopn | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpstps.t | |- T = ( R Xs. S ) | |
| 2 | xpstopn.j | |- J = ( TopOpen ` R ) | |
| 3 | xpstopn.k | |- K = ( TopOpen ` S ) | |
| 4 | xpstopn.o | |- O = ( TopOpen ` T ) | |
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) | |
| 6 | eqid | |- ( Base ` S ) = ( Base ` S ) | |
| 7 | eqid |  |-  ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) | |
| 8 | 1 2 3 4 5 6 7 | xpstopnlem2 | |- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) ) |