Metamath Proof Explorer


Theorem xpstopn

Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses xpstps.t
|- T = ( R Xs. S )
xpstopn.j
|- J = ( TopOpen ` R )
xpstopn.k
|- K = ( TopOpen ` S )
xpstopn.o
|- O = ( TopOpen ` T )
Assertion xpstopn
|- ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) )

Proof

Step Hyp Ref Expression
1 xpstps.t
 |-  T = ( R Xs. S )
2 xpstopn.j
 |-  J = ( TopOpen ` R )
3 xpstopn.k
 |-  K = ( TopOpen ` S )
4 xpstopn.o
 |-  O = ( TopOpen ` T )
5 eqid
 |-  ( Base ` R ) = ( Base ` R )
6 eqid
 |-  ( Base ` S ) = ( Base ` S )
7 eqid
 |-  ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } )
8 1 2 3 4 5 6 7 xpstopnlem2
 |-  ( ( R e. TopSp /\ S e. TopSp ) -> O = ( J tX K ) )