Step |
Hyp |
Ref |
Expression |
1 |
|
xpstps.t |
|- T = ( R Xs. S ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
4 |
|
simpl |
|- ( ( R e. TopSp /\ S e. TopSp ) -> R e. TopSp ) |
5 |
|
simpr |
|- ( ( R e. TopSp /\ S e. TopSp ) -> S e. TopSp ) |
6 |
|
eqid |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
7 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
8 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
9 |
1 2 3 4 5 6 7 8
|
xpsval |
|- ( ( R e. TopSp /\ S e. TopSp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
10 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
11 |
6
|
xpsff1o2 |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
12 |
11
|
a1i |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
13 |
|
f1ocnv |
|- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
14 |
|
f1ofo |
|- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
15 |
12 13 14
|
3syl |
|- ( ( R e. TopSp /\ S e. TopSp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
16 |
|
fvexd |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ( Scalar ` R ) e. _V ) |
17 |
|
2on |
|- 2o e. On |
18 |
17
|
a1i |
|- ( ( R e. TopSp /\ S e. TopSp ) -> 2o e. On ) |
19 |
|
xpscf |
|- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> TopSp <-> ( R e. TopSp /\ S e. TopSp ) ) |
20 |
19
|
biimpri |
|- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> TopSp ) |
21 |
8 16 18 20
|
prdstps |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. TopSp ) |
22 |
9 10 15 21
|
imastps |
|- ( ( R e. TopSp /\ S e. TopSp ) -> T e. TopSp ) |