| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xpstps.t |
|- T = ( R Xs. S ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 4 |
|
simpl |
|- ( ( R e. TopSp /\ S e. TopSp ) -> R e. TopSp ) |
| 5 |
|
simpr |
|- ( ( R e. TopSp /\ S e. TopSp ) -> S e. TopSp ) |
| 6 |
|
eqid |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 7 |
|
eqid |
|- ( Scalar ` R ) = ( Scalar ` R ) |
| 8 |
|
eqid |
|- ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
| 9 |
1 2 3 4 5 6 7 8
|
xpsval |
|- ( ( R e. TopSp /\ S e. TopSp ) -> T = ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 10 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) |
| 11 |
6
|
xpsff1o2 |
|- ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) |
| 12 |
11
|
a1i |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
| 13 |
|
f1ocnv |
|- ( ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ( ( Base ` R ) X. ( Base ` S ) ) -1-1-onto-> ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 14 |
|
f1ofo |
|- ( `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( ( Base ` R ) X. ( Base ` S ) ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 15 |
12 13 14
|
3syl |
|- ( ( R e. TopSp /\ S e. TopSp ) -> `' ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. ( Base ` R ) , y e. ( Base ` S ) |-> { <. (/) , x >. , <. 1o , y >. } ) -onto-> ( ( Base ` R ) X. ( Base ` S ) ) ) |
| 16 |
|
fvexd |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ( Scalar ` R ) e. _V ) |
| 17 |
|
2on |
|- 2o e. On |
| 18 |
17
|
a1i |
|- ( ( R e. TopSp /\ S e. TopSp ) -> 2o e. On ) |
| 19 |
|
xpscf |
|- ( { <. (/) , R >. , <. 1o , S >. } : 2o --> TopSp <-> ( R e. TopSp /\ S e. TopSp ) ) |
| 20 |
19
|
biimpri |
|- ( ( R e. TopSp /\ S e. TopSp ) -> { <. (/) , R >. , <. 1o , S >. } : 2o --> TopSp ) |
| 21 |
8 16 18 20
|
prdstps |
|- ( ( R e. TopSp /\ S e. TopSp ) -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. TopSp ) |
| 22 |
9 10 15 21
|
imastps |
|- ( ( R e. TopSp /\ S e. TopSp ) -> T e. TopSp ) |