Step |
Hyp |
Ref |
Expression |
1 |
|
xpsval.t |
|- T = ( R Xs. S ) |
2 |
|
xpsval.x |
|- X = ( Base ` R ) |
3 |
|
xpsval.y |
|- Y = ( Base ` S ) |
4 |
|
xpsval.1 |
|- ( ph -> R e. V ) |
5 |
|
xpsval.2 |
|- ( ph -> S e. W ) |
6 |
|
xpsval.f |
|- F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) |
7 |
|
xpsval.k |
|- G = ( Scalar ` R ) |
8 |
|
xpsval.u |
|- U = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) |
9 |
4
|
elexd |
|- ( ph -> R e. _V ) |
10 |
5
|
elexd |
|- ( ph -> S e. _V ) |
11 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
12 |
11 2
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = X ) |
13 |
|
fveq2 |
|- ( s = S -> ( Base ` s ) = ( Base ` S ) ) |
14 |
13 3
|
eqtr4di |
|- ( s = S -> ( Base ` s ) = Y ) |
15 |
|
mpoeq12 |
|- ( ( ( Base ` r ) = X /\ ( Base ` s ) = Y ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
16 |
12 14 15
|
syl2an |
|- ( ( r = R /\ s = S ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) |
17 |
16 6
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = F ) |
18 |
17
|
cnveqd |
|- ( ( r = R /\ s = S ) -> `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = `' F ) |
19 |
|
fveq2 |
|- ( r = R -> ( Scalar ` r ) = ( Scalar ` R ) ) |
20 |
19
|
adantr |
|- ( ( r = R /\ s = S ) -> ( Scalar ` r ) = ( Scalar ` R ) ) |
21 |
20 7
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( Scalar ` r ) = G ) |
22 |
|
simpl |
|- ( ( r = R /\ s = S ) -> r = R ) |
23 |
22
|
opeq2d |
|- ( ( r = R /\ s = S ) -> <. (/) , r >. = <. (/) , R >. ) |
24 |
|
simpr |
|- ( ( r = R /\ s = S ) -> s = S ) |
25 |
24
|
opeq2d |
|- ( ( r = R /\ s = S ) -> <. 1o , s >. = <. 1o , S >. ) |
26 |
23 25
|
preq12d |
|- ( ( r = R /\ s = S ) -> { <. (/) , r >. , <. 1o , s >. } = { <. (/) , R >. , <. 1o , S >. } ) |
27 |
21 26
|
oveq12d |
|- ( ( r = R /\ s = S ) -> ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |
28 |
27 8
|
eqtr4di |
|- ( ( r = R /\ s = S ) -> ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) = U ) |
29 |
18 28
|
oveq12d |
|- ( ( r = R /\ s = S ) -> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) = ( `' F "s U ) ) |
30 |
|
df-xps |
|- Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) |
31 |
|
ovex |
|- ( `' F "s U ) e. _V |
32 |
29 30 31
|
ovmpoa |
|- ( ( R e. _V /\ S e. _V ) -> ( R Xs. S ) = ( `' F "s U ) ) |
33 |
9 10 32
|
syl2anc |
|- ( ph -> ( R Xs. S ) = ( `' F "s U ) ) |
34 |
1 33
|
eqtrid |
|- ( ph -> T = ( `' F "s U ) ) |