| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsval.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsval.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsval.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsval.1 |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | xpsval.2 |  |-  ( ph -> S e. W ) | 
						
							| 6 |  | xpsval.f |  |-  F = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 7 |  | xpsval.k |  |-  G = ( Scalar ` R ) | 
						
							| 8 |  | xpsval.u |  |-  U = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 9 | 4 | elexd |  |-  ( ph -> R e. _V ) | 
						
							| 10 | 5 | elexd |  |-  ( ph -> S e. _V ) | 
						
							| 11 |  | fveq2 |  |-  ( r = R -> ( Base ` r ) = ( Base ` R ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( r = R -> ( Base ` r ) = X ) | 
						
							| 13 |  | fveq2 |  |-  ( s = S -> ( Base ` s ) = ( Base ` S ) ) | 
						
							| 14 | 13 3 | eqtr4di |  |-  ( s = S -> ( Base ` s ) = Y ) | 
						
							| 15 |  | mpoeq12 |  |-  ( ( ( Base ` r ) = X /\ ( Base ` s ) = Y ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) | 
						
							| 16 | 12 14 15 | syl2an |  |-  ( ( r = R /\ s = S ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) | 
						
							| 17 | 16 6 | eqtr4di |  |-  ( ( r = R /\ s = S ) -> ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = F ) | 
						
							| 18 | 17 | cnveqd |  |-  ( ( r = R /\ s = S ) -> `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) = `' F ) | 
						
							| 19 |  | fveq2 |  |-  ( r = R -> ( Scalar ` r ) = ( Scalar ` R ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( r = R /\ s = S ) -> ( Scalar ` r ) = ( Scalar ` R ) ) | 
						
							| 21 | 20 7 | eqtr4di |  |-  ( ( r = R /\ s = S ) -> ( Scalar ` r ) = G ) | 
						
							| 22 |  | simpl |  |-  ( ( r = R /\ s = S ) -> r = R ) | 
						
							| 23 | 22 | opeq2d |  |-  ( ( r = R /\ s = S ) -> <. (/) , r >. = <. (/) , R >. ) | 
						
							| 24 |  | simpr |  |-  ( ( r = R /\ s = S ) -> s = S ) | 
						
							| 25 | 24 | opeq2d |  |-  ( ( r = R /\ s = S ) -> <. 1o , s >. = <. 1o , S >. ) | 
						
							| 26 | 23 25 | preq12d |  |-  ( ( r = R /\ s = S ) -> { <. (/) , r >. , <. 1o , s >. } = { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 27 | 21 26 | oveq12d |  |-  ( ( r = R /\ s = S ) -> ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) = ( G Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) | 
						
							| 28 | 27 8 | eqtr4di |  |-  ( ( r = R /\ s = S ) -> ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) = U ) | 
						
							| 29 | 18 28 | oveq12d |  |-  ( ( r = R /\ s = S ) -> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) = ( `' F "s U ) ) | 
						
							| 30 |  | df-xps |  |-  Xs. = ( r e. _V , s e. _V |-> ( `' ( x e. ( Base ` r ) , y e. ( Base ` s ) |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` r ) Xs_ { <. (/) , r >. , <. 1o , s >. } ) ) ) | 
						
							| 31 |  | ovex |  |-  ( `' F "s U ) e. _V | 
						
							| 32 | 29 30 31 | ovmpoa |  |-  ( ( R e. _V /\ S e. _V ) -> ( R Xs. S ) = ( `' F "s U ) ) | 
						
							| 33 | 9 10 32 | syl2anc |  |-  ( ph -> ( R Xs. S ) = ( `' F "s U ) ) | 
						
							| 34 | 1 33 | eqtrid |  |-  ( ph -> T = ( `' F "s U ) ) |