| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xpsds.t |  |-  T = ( R Xs. S ) | 
						
							| 2 |  | xpsds.x |  |-  X = ( Base ` R ) | 
						
							| 3 |  | xpsds.y |  |-  Y = ( Base ` S ) | 
						
							| 4 |  | xpsds.1 |  |-  ( ph -> R e. V ) | 
						
							| 5 |  | xpsds.2 |  |-  ( ph -> S e. W ) | 
						
							| 6 |  | xpsds.p |  |-  P = ( dist ` T ) | 
						
							| 7 |  | xpsds.m |  |-  M = ( ( dist ` R ) |` ( X X. X ) ) | 
						
							| 8 |  | xpsds.n |  |-  N = ( ( dist ` S ) |` ( Y X. Y ) ) | 
						
							| 9 |  | xpsds.3 |  |-  ( ph -> M e. ( *Met ` X ) ) | 
						
							| 10 |  | xpsds.4 |  |-  ( ph -> N e. ( *Met ` Y ) ) | 
						
							| 11 |  | eqid |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 12 |  | eqid |  |-  ( Scalar ` R ) = ( Scalar ` R ) | 
						
							| 13 |  | eqid |  |-  ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) = ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) | 
						
							| 14 | 1 2 3 4 5 11 12 13 | xpsval |  |-  ( ph -> T = ( `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) "s ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 15 | 1 2 3 4 5 11 12 13 | xpsrnbas |  |-  ( ph -> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) = ( Base ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) ) | 
						
							| 16 | 11 | xpsff1o2 |  |-  ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 17 |  | f1ocnv |  |-  ( ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ( X X. Y ) -1-1-onto-> ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 18 | 16 17 | mp1i |  |-  ( ph -> `' ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) : ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) -1-1-onto-> ( X X. Y ) ) | 
						
							| 19 |  | ovexd |  |-  ( ph -> ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) e. _V ) | 
						
							| 20 |  | eqid |  |-  ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) = ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 | xpsxmetlem |  |-  ( ph -> ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 22 |  | ssid |  |-  ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) | 
						
							| 23 |  | xmetres2 |  |-  ( ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) /\ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) C_ ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 24 | 21 22 23 | sylancl |  |-  ( ph -> ( ( dist ` ( ( Scalar ` R ) Xs_ { <. (/) , R >. , <. 1o , S >. } ) ) |` ( ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) X. ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) e. ( *Met ` ran ( x e. X , y e. Y |-> { <. (/) , x >. , <. 1o , y >. } ) ) ) | 
						
							| 25 | 14 15 18 19 20 6 24 | imasf1oxmet |  |-  ( ph -> P e. ( *Met ` ( X X. Y ) ) ) |