Step |
Hyp |
Ref |
Expression |
1 |
|
inss1 |
|- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ dom ( A X. B ) |
2 |
|
dmxpss |
|- dom ( A X. B ) C_ A |
3 |
1 2
|
sstri |
|- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ A |
4 |
|
inss2 |
|- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ ran ( A X. B ) |
5 |
|
rnxpss |
|- ran ( A X. B ) C_ B |
6 |
4 5
|
sstri |
|- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ B |
7 |
3 6
|
ssini |
|- ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ ( A i^i B ) |
8 |
|
eqimss |
|- ( ( A i^i B ) = (/) -> ( A i^i B ) C_ (/) ) |
9 |
7 8
|
sstrid |
|- ( ( A i^i B ) = (/) -> ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ (/) ) |
10 |
|
ss0 |
|- ( ( dom ( A X. B ) i^i ran ( A X. B ) ) C_ (/) -> ( dom ( A X. B ) i^i ran ( A X. B ) ) = (/) ) |
11 |
9 10
|
syl |
|- ( ( A i^i B ) = (/) -> ( dom ( A X. B ) i^i ran ( A X. B ) ) = (/) ) |
12 |
11
|
coemptyd |
|- ( ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) = (/) ) |
13 |
|
0ss |
|- (/) C_ ( A X. B ) |
14 |
12 13
|
eqsstrdi |
|- ( ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) ) |
15 |
|
neqne |
|- ( -. ( A i^i B ) = (/) -> ( A i^i B ) =/= (/) ) |
16 |
15
|
xpcoidgend |
|- ( -. ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) = ( A X. B ) ) |
17 |
|
ssid |
|- ( A X. B ) C_ ( A X. B ) |
18 |
16 17
|
eqsstrdi |
|- ( -. ( A i^i B ) = (/) -> ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) ) |
19 |
14 18
|
pm2.61i |
|- ( ( A X. B ) o. ( A X. B ) ) C_ ( A X. B ) |