Metamath Proof Explorer


Theorem xrcmp

Description: The topology of the extended reals is compact. Since the topology of the extended reals extends the topology of the reals (by xrtgioo ), this means that RR* is a compactification of RR . (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Assertion xrcmp
|- ( ordTop ` <_ ) e. Comp

Proof

Step Hyp Ref Expression
1 xrhmph
 |-  II ~= ( ordTop ` <_ )
2 iicmp
 |-  II e. Comp
3 cmphmph
 |-  ( II ~= ( ordTop ` <_ ) -> ( II e. Comp -> ( ordTop ` <_ ) e. Comp ) )
4 1 2 3 mp2
 |-  ( ordTop ` <_ ) e. Comp