Step |
Hyp |
Ref |
Expression |
1 |
|
ressxr |
|- RR C_ RR* |
2 |
|
xrecex |
|- ( ( B e. RR /\ B =/= 0 ) -> E. y e. RR ( B *e y ) = 1 ) |
3 |
2
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> E. y e. RR ( B *e y ) = 1 ) |
4 |
|
ssrexv |
|- ( RR C_ RR* -> ( E. y e. RR ( B *e y ) = 1 -> E. y e. RR* ( B *e y ) = 1 ) ) |
5 |
1 3 4
|
mpsyl |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> E. y e. RR* ( B *e y ) = 1 ) |
6 |
|
simprl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> y e. RR* ) |
7 |
|
simpll |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> A e. RR* ) |
8 |
6 7
|
xmulcld |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> ( y *e A ) e. RR* ) |
9 |
|
oveq1 |
|- ( ( B *e y ) = 1 -> ( ( B *e y ) *e A ) = ( 1 *e A ) ) |
10 |
9
|
ad2antll |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> ( ( B *e y ) *e A ) = ( 1 *e A ) ) |
11 |
|
simplr |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> B e. RR ) |
12 |
11
|
rexrd |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> B e. RR* ) |
13 |
|
xmulass |
|- ( ( B e. RR* /\ y e. RR* /\ A e. RR* ) -> ( ( B *e y ) *e A ) = ( B *e ( y *e A ) ) ) |
14 |
12 6 7 13
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> ( ( B *e y ) *e A ) = ( B *e ( y *e A ) ) ) |
15 |
|
xmulid2 |
|- ( A e. RR* -> ( 1 *e A ) = A ) |
16 |
7 15
|
syl |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> ( 1 *e A ) = A ) |
17 |
10 14 16
|
3eqtr3d |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> ( B *e ( y *e A ) ) = A ) |
18 |
|
oveq2 |
|- ( x = ( y *e A ) -> ( B *e x ) = ( B *e ( y *e A ) ) ) |
19 |
18
|
eqeq1d |
|- ( x = ( y *e A ) -> ( ( B *e x ) = A <-> ( B *e ( y *e A ) ) = A ) ) |
20 |
19
|
rspcev |
|- ( ( ( y *e A ) e. RR* /\ ( B *e ( y *e A ) ) = A ) -> E. x e. RR* ( B *e x ) = A ) |
21 |
8 17 20
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR ) /\ ( y e. RR* /\ ( B *e y ) = 1 ) ) -> E. x e. RR* ( B *e x ) = A ) |
22 |
21
|
rexlimdvaa |
|- ( ( A e. RR* /\ B e. RR ) -> ( E. y e. RR* ( B *e y ) = 1 -> E. x e. RR* ( B *e x ) = A ) ) |
23 |
22
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( E. y e. RR* ( B *e y ) = 1 -> E. x e. RR* ( B *e x ) = A ) ) |
24 |
5 23
|
mpd |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> E. x e. RR* ( B *e x ) = A ) |
25 |
|
eqtr3 |
|- ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> ( B *e x ) = ( B *e y ) ) |
26 |
|
simp1 |
|- ( ( x e. RR* /\ y e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> x e. RR* ) |
27 |
|
simp2 |
|- ( ( x e. RR* /\ y e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> y e. RR* ) |
28 |
|
simp3l |
|- ( ( x e. RR* /\ y e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> B e. RR ) |
29 |
|
simp3r |
|- ( ( x e. RR* /\ y e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> B =/= 0 ) |
30 |
26 27 28 29
|
xmulcand |
|- ( ( x e. RR* /\ y e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> ( ( B *e x ) = ( B *e y ) <-> x = y ) ) |
31 |
25 30
|
syl5ib |
|- ( ( x e. RR* /\ y e. RR* /\ ( B e. RR /\ B =/= 0 ) ) -> ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> x = y ) ) |
32 |
31
|
3expa |
|- ( ( ( x e. RR* /\ y e. RR* ) /\ ( B e. RR /\ B =/= 0 ) ) -> ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> x = y ) ) |
33 |
32
|
expcom |
|- ( ( B e. RR /\ B =/= 0 ) -> ( ( x e. RR* /\ y e. RR* ) -> ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> x = y ) ) ) |
34 |
33
|
3adant1 |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> ( ( x e. RR* /\ y e. RR* ) -> ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> x = y ) ) ) |
35 |
34
|
ralrimivv |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> A. x e. RR* A. y e. RR* ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> x = y ) ) |
36 |
|
oveq2 |
|- ( x = y -> ( B *e x ) = ( B *e y ) ) |
37 |
36
|
eqeq1d |
|- ( x = y -> ( ( B *e x ) = A <-> ( B *e y ) = A ) ) |
38 |
37
|
reu4 |
|- ( E! x e. RR* ( B *e x ) = A <-> ( E. x e. RR* ( B *e x ) = A /\ A. x e. RR* A. y e. RR* ( ( ( B *e x ) = A /\ ( B *e y ) = A ) -> x = y ) ) ) |
39 |
24 35 38
|
sylanbrc |
|- ( ( A e. RR* /\ B e. RR /\ B =/= 0 ) -> E! x e. RR* ( B *e x ) = A ) |