Metamath Proof Explorer


Theorem xreqnltd

Description: A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses xreqnltd.1
|- ( ph -> A e. RR* )
xreqnltd.2
|- ( ph -> A = B )
Assertion xreqnltd
|- ( ph -> -. A < B )

Proof

Step Hyp Ref Expression
1 xreqnltd.1
 |-  ( ph -> A e. RR* )
2 xreqnltd.2
 |-  ( ph -> A = B )
3 2 1 eqeltrrd
 |-  ( ph -> B e. RR* )
4 xrlttri3
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( A = B <-> ( -. A < B /\ -. B < A ) ) )
5 1 3 4 syl2anc
 |-  ( ph -> ( A = B <-> ( -. A < B /\ -. B < A ) ) )
6 2 5 mpbid
 |-  ( ph -> ( -. A < B /\ -. B < A ) )
7 6 simpld
 |-  ( ph -> -. A < B )