Metamath Proof Explorer


Theorem xrex

Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006)

Ref Expression
Assertion xrex
|- RR* e. _V

Proof

Step Hyp Ref Expression
1 df-xr
 |-  RR* = ( RR u. { +oo , -oo } )
2 reex
 |-  RR e. _V
3 prex
 |-  { +oo , -oo } e. _V
4 2 3 unex
 |-  ( RR u. { +oo , -oo } ) e. _V
5 1 4 eqeltri
 |-  RR* e. _V