Step |
Hyp |
Ref |
Expression |
1 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
2 |
|
simp1 |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> A e. ( 0 [,] +oo ) ) |
3 |
1 2
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> A e. RR* ) |
4 |
|
0xr |
|- 0 e. RR* |
5 |
4
|
a1i |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 e. RR* ) |
6 |
|
pnfxr |
|- +oo e. RR* |
7 |
6
|
a1i |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> +oo e. RR* ) |
8 |
|
elicc4 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ A e. RR* ) -> ( A e. ( 0 [,] +oo ) <-> ( 0 <_ A /\ A <_ +oo ) ) ) |
9 |
5 7 3 8
|
syl3anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( A e. ( 0 [,] +oo ) <-> ( 0 <_ A /\ A <_ +oo ) ) ) |
10 |
2 9
|
mpbid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( 0 <_ A /\ A <_ +oo ) ) |
11 |
10
|
simpld |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 <_ A ) |
12 |
|
ge0nemnf |
|- ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo ) |
13 |
3 11 12
|
syl2anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> A =/= -oo ) |
14 |
|
simp2 |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> B e. ( 0 [,] +oo ) ) |
15 |
1 14
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> B e. RR* ) |
16 |
|
elicc4 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ B e. RR* ) -> ( B e. ( 0 [,] +oo ) <-> ( 0 <_ B /\ B <_ +oo ) ) ) |
17 |
5 7 15 16
|
syl3anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( B e. ( 0 [,] +oo ) <-> ( 0 <_ B /\ B <_ +oo ) ) ) |
18 |
14 17
|
mpbid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( 0 <_ B /\ B <_ +oo ) ) |
19 |
18
|
simpld |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 <_ B ) |
20 |
|
ge0nemnf |
|- ( ( B e. RR* /\ 0 <_ B ) -> B =/= -oo ) |
21 |
15 19 20
|
syl2anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> B =/= -oo ) |
22 |
|
simp3 |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> C e. ( 0 [,] +oo ) ) |
23 |
1 22
|
sselid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> C e. RR* ) |
24 |
|
elicc4 |
|- ( ( 0 e. RR* /\ +oo e. RR* /\ C e. RR* ) -> ( C e. ( 0 [,] +oo ) <-> ( 0 <_ C /\ C <_ +oo ) ) ) |
25 |
5 7 23 24
|
syl3anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( C e. ( 0 [,] +oo ) <-> ( 0 <_ C /\ C <_ +oo ) ) ) |
26 |
22 25
|
mpbid |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( 0 <_ C /\ C <_ +oo ) ) |
27 |
26
|
simpld |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> 0 <_ C ) |
28 |
|
ge0nemnf |
|- ( ( C e. RR* /\ 0 <_ C ) -> C =/= -oo ) |
29 |
23 27 28
|
syl2anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> C =/= -oo ) |
30 |
|
xaddass |
|- ( ( ( A e. RR* /\ A =/= -oo ) /\ ( B e. RR* /\ B =/= -oo ) /\ ( C e. RR* /\ C =/= -oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |
31 |
3 13 15 21 23 29 30
|
syl222anc |
|- ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) /\ C e. ( 0 [,] +oo ) ) -> ( ( A +e B ) +e C ) = ( A +e ( B +e C ) ) ) |