Metamath Proof Explorer


Theorem xrge0addge

Description: A number is less than or equal to itself plus a nonnegative number. (Contributed by Thierry Arnoux, 19-Jul-2020)

Ref Expression
Assertion xrge0addge
|- ( ( A e. RR* /\ B e. ( 0 [,] +oo ) ) -> A <_ ( A +e B ) )

Proof

Step Hyp Ref Expression
1 elxrge0
 |-  ( B e. ( 0 [,] +oo ) <-> ( B e. RR* /\ 0 <_ B ) )
2 1 biimpi
 |-  ( B e. ( 0 [,] +oo ) -> ( B e. RR* /\ 0 <_ B ) )
3 xraddge02
 |-  ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ B -> A <_ ( A +e B ) ) )
4 3 impr
 |-  ( ( A e. RR* /\ ( B e. RR* /\ 0 <_ B ) ) -> A <_ ( A +e B ) )
5 2 4 sylan2
 |-  ( ( A e. RR* /\ B e. ( 0 [,] +oo ) ) -> A <_ ( A +e B ) )