| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 2 |
|
dfss2 |
|- ( ( 0 [,] +oo ) C_ RR* <-> ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) ) |
| 3 |
1 2
|
mpbi |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( 0 [,] +oo ) |
| 4 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
| 5 |
|
eqid |
|- ( RR*s |`s ( 0 [,] +oo ) ) = ( RR*s |`s ( 0 [,] +oo ) ) |
| 6 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
| 7 |
5 6
|
ressbas |
|- ( ( 0 [,] +oo ) e. _V -> ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) ) |
| 8 |
4 7
|
ax-mp |
|- ( ( 0 [,] +oo ) i^i RR* ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 9 |
3 8
|
eqtr3i |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |